Читаем Фундаментальная радиохимия полностью

2) В технологическом (антропном) масштабе (отрезки времени, сопоставимые с интервалом, протекшим с момента возникновения Homo Sapiens, и гораздо меньшие), как только что было показано выше, активность этого радионуклида (и, естественно, всех других, обладающих такими же значительными периодами полураспада) может быть рассматриваема как практически независимая от времени: . Это, разумеется, парадоксальный вывод, сбивший с толку даже Фредерика Содди, но он вполне объясним, если не забывать об иерархии масштабов времени, всегда принимаемой во внимание в естествознании.

Иными словами, обсуждение зависимости активности долгоживущих радионуклидов от времени имеет смысл и сопряжено с практически полезными расчетами только тогда, когда четко определен масштаб времени, в соответствии с которым это обсуждение проводится.

1.3.6. Классификация радионуклидов

Работы А. Беккереля, П. и М. Кюри, Э. Резерфорда и других исследователей на пороге XX столетия открыли новую страницу в естествознании: было установлено, что радиоактивность является неустранимым свойством многих природных тел. Последующее открытие ядерных реакций (Э. Резерфорд), искусственной радиоактивности (Ф. и И. Жолио-Кюри), а затем реакций деления ядер (О. Ган, Ф. Штрассманн) и синтез трансурановых элементов (Э. Макмиллан, Ф. Эйблсон, Г. Сиборг) существенно увеличили количество индивидуальных (т.е. характеризуемых константой ) объектов, называемых радионуклидами.

Научный подход к описанию любого разнообразия включает требование классификации. В данном случае эта проблема выглядит несравнимо проще, чем та фундаментальная классификация, которую выполнил Д. И. Менделеев, сформулировав периодический закон: дело в том, что любой радионуклид является радиоактивным изотопом того или иного химического элемента.

Поэтому в предлагаемом конспекте лекций авторы выбрали первым классификационным основанием происхождение радионуклидов, поскольку именно эта информация является наиболее важной для установления источников распространения радионуклидов не только в техносфере, но и в биосфере в целом.

Сведения о естественных радионуклидах, не входящих в радиоактивные семейства и не имеющих космогенного происхождения (т.е. не образующихся в результате взаимодействия космического излучения со стабильными нуклидами вещества геосферы), помещены в табл.1. Достоверность некоторых данных о естественной радиоактивности до сих пор проблематична. Это находит свое выражение, в частности, и в том, что наиболее ответственные и проверенные временем тексты (энциклопедический словарь, публикации МКРЗ) включают далеко не весь перечень радионуклидов, упоминаемых в других источниках.

Данные, приведенные в табл.1, практически не учитываются в деятельности людей, т.к. чрезвычайно высокие периоды полураспада этих радионуклидов являются причиной их низкой удельной активности, которая ни в технологическом, ни в радиоэкологическом отношениях не является значимым фактором первостепенной важности. Исключением здесь, пожалуй, являются радионуклиды 40K и 87Rb, радиобиологическая роль которых уже достаточно выяснена и продолжает уточняться в дальнейших исследованиях. Табл.2 содержит данные об основных радионуклидах космогенного происхождения.

Нижеследующая схема представляет собой классификацию существующих и синтезируемых радионуклидов.



Табл.1. Естественные радионуклиды, не имеющие природного генератора


Табл.2. Радионуклиды космогенного происхождения

1.3.7. Последовательный радиоактивный распад

1. "Генетическая пара"

Рассмотрим случай, когда продукт распада некоторого радионуклида тоже радиоактивен, но после его распада образуется стабильный изотоп. Будем индексами "1" и "2" помечать параметры и переменные, относящиеся соответственно к "материнскому" и "дочернему" радионуклидам. При этих условиях эволюция "генетической пары" представляет собой вариант классической "бассейновой" задачи: "Прирост числа атомов дочернего радионуклида в единицу времени равен разности скоростей актов распада материнского и дочернего радионуклидов, поскольку скорость распада материнского радионуклида равна скорости возникновения дочернего":

. (1.18)

Это линейное неоднородное дифференциальное уравнение первого порядка можно решить, например, методом Лагранжа (метод вариации постоянной). В результате при наложении условия, что при t = 0 N02 = 0 решение (1.18) будет иметь вид:

(1.19)

Графически эволюция "генетической пары" изображена на рис.1.1.


Рис.1.1. Изменение активности при Т1 >Т2 (примем условно Т1=10Т2): 1 – суммарная активность; 2 – активность дочернего радионуклида; 3 – активность материнского радионуклида.


Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука