Читаем Фундаментальные алгоритмы и структуры данных в Delphi полностью

Если мы всерьез намереваемся использовать бинарное дерево, необходимо рассмотреть, как выполняется добавление в дерево элементов (т.е. узлов), удаление элементов из дерева и посещение всех элементов дерева. Последняя операция позволит выполнять поиск конкретного элемента. Поскольку выполнение последних двух операций невозможно без рассмотрения первой, начнем с рассмотрения вставки узла в бинарное дерево.

Чтобы иметь возможность вставить узел в бинарное дерево, необходимо выбрать родительский узел, к которому можно присоединить новый узел в качестве дочернего, и более того, этот узел не может уже иметь два дочерних узла. Мы должны также знать, каким дочерним узлом - левым или правым - должен стать новый узел.

При заданном родительском узле и указании дочерних узлов слева направо код для вставки узла очень прост. Мы создаем узел, устанавливаем в качестве значения его поля данных элемент, который добавляем в дерево, и определяем обе его дочерние связи как nil. Затем, во многом подобно вставке узла в двусвязный список, мы устанавливаем соответствующий дочерний указатель родительского узла так, чтобы он указывал на новый дочерний узел, а )родительский указатель дочернего узла - на родительский узел.

Листинг 8.2. Вставка в бинарное дерево

function TtdBinaryTree.InsertAt(aParentNode : PtdBinTreeNode;

aChildType : TtdChildType; aItem : pointer): PtdBinTreeNode;

begin

{если родительский узел является нулевым, считаем, что выполняется вставка корневого узла}

if (aParentNode = nil) then begin

aParentNode := FHead;

aChildType :=ctLeft;

end;

{выполнить проверку mos о, установлена ли уже дочерняя связь}

if (aParentNode^.btChild[aChildType]<> nil) then

btError(tdeBinTreeHasChild, 'InsertAt');

{распределить новый узел и вставить в качестве требуемого дочернего узла родительского узла}

Result := BTNodeManager.AllocNode;

Result^.btParent := aParentNode;

Result^.btChild[ctLeft] :=nil;

Result^.btChild[ctRight] := nil;

Result^.btData := aItem;

Result^.btExtra := 0;

aParentNode^.btChild[aChildType] := Result;

inc(FCount);

end;

Обратите внимание, что приведенный в листинге 8.2 код вначале проверяет, является ли добавляемый узел корневым. Если да, то переданный родительский узел равен nil. В этом случае метод инициализирует родительский узел значением внутреннего заглавного узла.

Кроме этой проверки метод InsertAt убеждается, что дочерняя связь, которую предполагается использовать для нового узла, действительно не используется. В противном случае это будет грубой ошибкой.

Обратите внимание, что класс бинарного дерева (составной частью которого является этот метод) использует диспетчер узлов для распределения и освобождения узлов. Поскольку все узлы имеют одинаковый размер, в этом, как было сказано в главе 3, заложен глубокий смысл.

А как выполняется удаление узлов? Эта задача несколько сложнее, поскольку узел может иметь один или два дочерних узла. Первое правило удаления может быть сформулировано следующим образом: листовой узел (т.е. не имеющий дочерних узлов) может быть удален без каких-либо нежелательных последствий. При этом мы выясняем, каким дочерним узлом родительского узла является лист, и устанавливаем соответствующую дочернюю связь равной nil. После этого узел может быть освобожден.

Второе правило удаления из бинарного дерева применяется в отношении случая, когда удаляемый узел имеет один дочерний узел. Эта задача также достаточно проста: мы просто перемещаем дочерний узел вверх по дереву, чтобы он стал тем же дочерним узлом родительского узла, каким является удаляемый узел.

Третье правило применяется к случаю, когда удаляемый узел имеет два дочерних узла. Как и можно было предположить, это правило звучит просто: узел не может быть удален. Попытка сделать это является ошибкой. Позже мы рассмотрим вариант бинарного дерева - дерево бинарного поиска, - который содержит достаточный объем дополнительной внедренной в дерево информации, чтобы можно было обойти это ограничение.

Листинг 8.3. Удаление из бинарного дерева

procedure TtdBinaryTree.Delete(aNode : PtdBinTreeNode);

var

OurChildsType : TtdChildType;

OurType : TtdChildType;

begin

if (aNode = nil) then

Exit;

{выяснить, имеется ли единственный дочерний узел, и то, каким узлом он является; при наличии двух дочерних узлов сгенерировать ошибку}

if (aNode^.btChild[ctLeft] <> nil) then begin

if (aNode^.btChild[ctRight] <> nil) then

btError(tdeBinTree2Children, 'Delete');

OurChildsType :=ctLeft;

end

else

OurChildsType :=ctRight;

{выяснить, является ли дочерний узел левым или правым дочерним узлом данного родительского узла}

OurType := GetChildType(aNode);

{установить дочернюю связь данного родительского узла равной данной дочерней связи}

aNode^.btParent^.btChild[OurType] := aNode^.btChild[OurChildsType];

if (aNode^.btChild[OurChildsType] <> nil) then

aNode^.btChild[OurChildsType]^.btParent := aNode^.btParent;

{освободить узел}

if Assigned(FDispose) then

FDispose(aNode^.btData);

BTNodeManager.FreeNode(aNode);

dec(FCount);

end;

Перейти на страницу:

Похожие книги

C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT