Читаем Фундаментальные алгоритмы и структуры данных в Delphi полностью

В соответствии с этим методом, мы инициализируем массив чисел с плавающей запятой с помощью простого генератора, например, минимального стандартного генератора случайных чисел, а затем используем два индекса в массиве для генерации последовательности случайных чисел на основе следующего алгоритма. Складываем значения, на которые указывают два индекса и записываем результат в элемент, на который указывает первый индекс (если полученная сумма будет больше 1.0, перед сохранением результата мы вычитаем из суммы значение 1.0). Возвращаем полученное значение в качестве следующего случайного числа. Перемещаем оба индекса вперед на одну позицию, при необходимости переходя от конца массива к его началу. Далее процесс повторяется снова.

Листинг 6.10. Аддитивный генератор

type

TtdAdditiveGenerator = class (TtdBasePRNG) private

FInx1 : integer;

FInx2 : integer;

FPRNG : TtdMinStandardPRNG;

FTable : array [0..54] of double;

protected

procedure agSetSeed(aValue : longint);

procedure agInitTable;

public

constructor Create(aSeed : longint);

destructor Destroy; override

function AsDouble : double; override

property Seed : longint write agSetSeed;

end;

constructor TtdAdditiveGenerator.Create(aSeed : longint);

begin

inherited Create;

FPRNG := TtdMinStandardPRNG.Create(aSeed);

agInitTable;

FInx1 := 54;

FInx2 := 23;

end;

destructor TtdAdditiveGenerator.Destroy;

begin

FPRNG.Free

inherited Destroy;

end;

procedure TtdAdditiveGenerator.agSetSeed(aValue : longint);

begin

FPRNG.Seed := aValue;

agInitTable;

end;

procedure TtdAdditiveGenerator.agInitTable;

var

i : integer;

begin

for i := 54 downto 0 do

FTable[i] := FPRNG.AsDouble;

end;

function TtdAdditiveGenerator.AsDouble : double;

begin

Result := FTable[FInx1] + FTable[FInx2];

if (Result >= 1.0) then

Result := Result - 1.0;

FTable[FInx1] := Result;

inc(FInx1);

if (FInx1 >= 55) then

FInx1 := 0;

inc(FInx2);

if (FInx2 >= 55) then

FInx2 := 0;

end;

Если внимательно изучить код, показанный в листинге 6.10, можно обратить внимание, что для формирования массива, используемого при работе аддитивного генератора, применяется минимальный стандартный генератор случайных чисел. Несмотря на то что мы не можем определить "начальное число" для аддитивного генератора (фактически по истечении некоторого времени начальное число эквивалентно всему массиву;

внутренний генератор псевдослучайных чисел вызывается только 55 раз), мы можем его установить. При установке начального значения вызывается внутренний генератор, который заполняет массив, предназначенный для инициализации аддитивного генератора.

Длина массива, 55, и значения индексов, 54 и 23, - это не просто взятые наугад значения. Было показано, что они дают хорошие последовательности случайных чисел при генерации целых значений. (В книге [11] можно найти таблицы других удачных значений длины массива и индексов.)

Самым хорошим свойством данного генератора является длина цикла. Она просто огромна (при реализации на основе значений типа longint длина цикла будет составлять 230(255- 1), или приблизительно 3 * 1025). Даже если бы вы генерировали каждую секунду триллион случайных чисел, то для того, чтобы пройти весь цикл, потребовались бы годы.

<p>Тасующие генераторы</p>

И последний тип рассматриваемых нами генераторов, позволяющих получать "более случайные" числа, принадлежит к алгоритмам тасования. Здесь мы опишем генератор, реализованный на основе одного внутреннего генератора, хотя существуют и другие генераторы, аналогичным образом использующие два внутренних генератора.

Как и для аддитивного генератора, на первом этапе создается массив случайных чисел с плавающей запятой. Количество элементов в массиве не имеет особого значения. Кнут (Knuth) предложил использовать длины порядка 100. В нашем примере будет использоваться массив из 97 элементов - простое число, близкое к 100 [11]. (Кстати, применение простого числа не обязательно, оно просто выбрано в качестве примера.) Заполним массив случайными числами, полученными с помощью минимального стандартного генератора случайных чисел. Введем новую вспомогательную переменную и установим ее значение равным следующему случайному числу в последовательности.

При необходимости генерации следующего случайного числа с помощью тасующего генератора, вспомогательная переменная используется для вычисления случайного числа из диапазона от 0 до 96. Устанавливаем значение вспомогательной переменной равным значению элемента с вычисленным индексом и заменяем элемент новым случайным числом, полученным от внутреннего генератора случайных чисел. В качестве результата тасующего генератора используется значение вспомогательной переменной.

Листинг 6.11. Тасующий генератор

type

TtdShuffleGenerator = class(TtdBasePRNG) private

FAux : double;

FPRNG : TtdMinStandardPRNG;

FTable : array [0..96] of double;

protected

procedure sgSetSeed(aValue : longint);

procedure sgInitTable;

public

constructor Create(aSeed : longint);

destructor Destroy; override;

function AsDouble : double; override;

property Seed : longint write sgSetSeed;

end;

constructor TtdShuffleGenerator.Create(aSeed : longint);

begin

Перейти на страницу:

Похожие книги

C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT