Читаем Фундаментальные алгоритмы и структуры данных в Delphi полностью

Если еще раз внимательно посмотреть на рис. 6.3, можно обратить внимание, что полученный список можно охарактеризовать как несколько объединенных односвязных и двухсвязных списков. На уровне 0 находится двухсвязный список, далее, на уровне 1 - односвязный список, который соединяет каждый второй узел, после него на уровне 2 находится еще один односвязный список, который объединяет каждый четвертый узел и, наконец, на уровне 3 односвязный список соединяет каждый восьмой узел. Таким образом, чтобы, например, найти узел с именем g, нужно перейти по указателю уровня 2 от начального узла к узлу d, затем по указателю первого уровня до узла f и, наконец, по указателю уровня 0 до узла g. Следовательно, теоретически говоря, чтобы найти седьмой узел, нужно будет перейти всего по трем указателям.

Теперь, когда мы в общих чертах рассмотрели алгоритм, давайте опишем его более подробно. Пусть у нас уже имеется список с пропусками. (Скоро мы изучим принцип создания списка с пропусками, однако часть алгоритма создания представляет собой алгоритм поиска, который мы сейчас и рассматриваем.) Алгоритм поиска работает следующим образом:

1. Установить значение переменной LevelNumber равным самому высшему уровню указателей списка с пропусками (предполагается, что уровень списка указывается при его создании и выполнении операций вставки и удаления).

2. Установить переменную BeforeNode на начальный фиктивный узел.

3. Перейти по прямому указателю уровня LevelNumber от узла BeforeNode. Назвать узел, в который мы попали, NextNode.

4. Сравнить элемент в узле NextNode с искомым. Если NextNode является искомым узлом, поиск завершается.

5. Если элемент в узле NextNode меньше искомого, то искомый узел должен находиться после узла NextNode. Установить переменную BeforeNode на узел NextNode и перейти к шагу 3.

6. Если элемент в узле NextNode больше искомого, то искомый узел, если он присутствует в списке, должен находиться между узлами BeforeNode и NextNode. Уменьшаем значение переменной LevelNumber на единицу (другими словами, уменьшаем количество пропускаемых за один шаг узлов).

7. Если значение переменной LevelNumber равно 0 или больше, перейти к шагу 3. В противном случае искомый элемент в списке не найден, и если его необходимо вставить, то его позиция должна находиться между узлами BeforeNode и NextNode.

В соответствии с этим алгоритмом, при поиске узла g на рис. 6.3 мы начинаем с уровня 3 и начального узла. Переходим по указателю уровня 3 до узла h. Сравниваем h и g. Поскольку h больше g, уменьшаем уровень на единицу и начинаем сначала. По указателю второго уровня от начального узла переходим к узлу d. d меньше, чем g, следовательно, узел d становится новым начальным узлом. Снова переходим по указателю уровня 2 до узла h. Поскольку h больше, чем g, уменьшаем уровень на единицу. Переходим от узла d по указателю уровня 1 до узла f. Он меньше искомого, поэтому делаем его новым начальным узлом. Переходим по указателю уровня 1, и мы снова попадаем в узел h, который больше искомого. Снова понижаем уровень на единицу, переходим вперед по указателю уровня 0 и находим искомый узел g.

Таким образом, при поиске было пройдено шесть ссылок и выполнено шесть сравнений. Звучит не очень впечатляюще, особенно если учитывать, что в простом двухсвязном списке нам пришлось бы перейти по семи указателям и выполнить семь сравнений. Тем не менее, на рис. 6.3 принято допущение, что указатель уровня n+1 переходит на расстояние, в два раза превышающее расстояние перехода для указателя уровня n. Но обязательно ли соблюдать это условие? Почему в два раза, а не в три или пять? В списке с пропусками, который будет создан в этой главе, указатели первого уровня будут переходить через четыре узла, указатели второго уровня - через 16 узлов (т.е. 4 * 4), указатели третьего уровня - через 64 узла (т.е. 4(^3^)) и указатели уровня n - через 4(^n^) узлов.

Подобный выбор расстояний переходов объясняется необходимостью балансировки степени возникновения переходов на большие расстояния на высоких уровнях и скорости поиска на уровне 0 при подходе к искомому узлу. Множитель 4 является хорошим компромиссом.

Насколько большими в таком случае будут узлы? Если предположить, что элемент, хранящийся в списке с пропусками, представляет собой указатель (как это было в главе 3), тогда размер узлов на уровне 0 будет равен, по крайней мере, размеру трех указателей (один указатель на данные, один - прямой указатель и один - обратный). Размер узлов на уровне 1 будет составлять четыре указателя

Перейти на страницу:

Похожие книги

C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT