По первому приближению человеческое тело — это некоторое нагромождение белков, жиров и углеводов, которое превращается в стройную систему, живет и эволюционирует благодаря генетическому коду — закодированной информации о предназначении каждой частички нашего тела. Химическими веществами, оживающими и работающими в живом организме благодаря этим кодам, занимается наука под названием "молекулярная биология", и значение ее трудно переоценить. Ее основная цель — полное знание о том, как работает тело человека, — позволит ученым, по сути, конкурировать с Богом и наравне с ним творить чудо человеческой жизни.
Однако сегодняшнее состояние молекулярной биологии сами ученые часто описывают фразой "блеск и нищета". Действительно, с одной стороны, микробиологи уже знают и умеют очень многое. Так, генетические "тексты" сегодня могут быть не только прочитаны, но и размножены и перетасованы; любые последовательности белков и генов могут быть синтезированы искусственно и вставлены в живые клетки.
Но вся проблема заключается в том, что, научившись "читать и писать" на чужом языке, ученые до сих пор не в состоянии перевести эти "иероглифы" на понятный нам язык. Ученые до сих пор не знают, что же конкретно кроется за каждым элементом генетического кода организма. В результате микробиологи, словно слепые, сегодня могут лишь наобум, беспорядочно тасуя последовательности генетических цепей и аминокислот, составлять из них какие-то новые соединения-вакцины, поведение которых, по сути, непредсказуемо и потому опасно. И зачастую подобные генно-инженерные лекарства оказывались бессильными или даже приводили к противоположному результату — смерти пациентов от мутаций генного характера.
В чем причина подобного незнания? Оказывается, для того, чтобы точно знать природу белка, нужно не только уметь слепо создавать живую "микромашину" из комбинаций разных аминокислот и не просто видеть готовый белок через микроскопы, а главное — точно знать, как и по какому принципу происходит его рождение. А этого-то до последнего времени никто не знал. И первым, кто постиг это, был Меклер.
Дело в том, что генетический код, определяющий путь от гена к живой молекуле белка, совершенно явно предусматривает два последовательных процесса. В начале происходит отображение информационных кислот РНК в длинную одномерную нитку, состоящую из различных аминокислотных остатков, числом до нескольких сотен. Это своего рода "заготовка" будущего белка. После этого эта нитка "закручивается" в трехмерную белковую молекулу. Длится это миллисекунды, практически одномоментно. Причем в соответствующей химической среде это происходит обязательно и по одним и тем же правилам, согласно генетическому коду, записанному в этой самой нитке. Подобный процесс происходит всегда, когда зарождается и развивается новый организм, когда растут клетки — вот уже несколько миллиардов лет, и всегда без ошибки.
Первый процесс еще сорок лет назад был объяснен американцами Чаргаффом, Уотсоном и Криком, составившим знаменитую модель "двойной спирали ДНК". А вот как именно происходит второй процесс — построение трехмерной молекулы белка из одномерной аминокислотной последовательности — впервые смог описать лишь Лазарь Борисович Меклер: до него этого никто себе и представить не мог. Впрочем, немногие смогли сделать это и после Меклера: с зарождения его первых принципов общего генетического кода минуло уже более тридцати лет.
Можно сказать, что до теории Меклера ученые знали лишь начальную и конечную стадии формирования белка. Более того, готовые молекулы белка могли быть зафиксированы лишь в своем статичном положении, единственно с помощью рентгенограмм, что начистую лишало ученых информации о каком бы то ни было развитии белка, его генезисе. Получалось, что до самого последнего времени ученые не знали практически ничего о важнейших микробиологических процессах: о самоорганизации белка, о его упорядоченном движении и работе, об обмене энергией между химическим растворителем (вроде воды) и биологической "микромашиной", — то есть о жизни как таковой.