Читаем Генетика на пальцах полностью

Для образования нового вида в популяции должно накопиться определенное количество признаков. Изолированность популяций этому способствует, поскольку в каждой популяции происходят свои мутации и появляются свои признаки. Если обмена мутациями (признаками) между популяциями не будет, то в конечном итоге разница между популяциями может достигнуть пределов, с которых начнется новый вид. При наличии потока генов между популяциями процесс видообразования в них замедляется. Что же касается дрейфа генов, то он может изменить частоты аллелей таким образом, что популяция станет ближе к образованию нового вида. А может и не изменить, или сделает все наоборот.

Настало время разобраться с генетическим равновесием в популяциях. А то мы было заговорили о нем, но сразу же переключились на дрейф генов. Но, тем не менее, успели сказать, что к механизмам, поддерживающим генетическое равновесие в популяциях, относятся естественный отбор и дрейф генов.

Вам ничего не показалось странным?

Как может естественный отбор, устраняющий из популяции плохо приспособленные организмы (плохо приспособленные генотипы), поддерживать генетическое равновесие? Он, наоборот, его нарушает! И о дрейфе генов можно сказать то же самое.

С естественным отбором дело обстоит сложнее, чем может показаться на первый взгляд. Далеко не всегда естественный отбор приводит к выработке новых адаптаций. Он может поддерживать уже сложившуюся адаптационную структуру популяции, не позволяя изменчивости разрушать уже существующие приспособления, то есть нарушать сложившееся генетическое равновесие.

Более того, естественный отбор формирует популяции. Он создает их, распределяя организмы вида по более благоприятным ареалам обитания. А еще естественный отбор поддерживает равновесие между разными признаками организма. Зачастую приспособленность одного признака в ходе отбора может понижаться, если это понижение перекрывается повышением приспособленности другого признака и в целом выгодно для организма. Можно сказать, что организм в подобных случаях совершает гамбит[61] – жертвует одним признаком для того, чтобы выиграть партию, то есть выжить.

Примером такого эволюционного «гамбита» может служить яркое оперение у самцов многих птиц, который делает их хорошо заметными не только для самок, но и для хищников. Однако природа сделала в этом случае ставку на повышение вероятности успешного размножения и оказалась права. Длительное существование таких видов доказывает правильность «гамбита», подтверждает, что успешное размножение для этих видов птиц важнее демаскировки самцов. Пусть какая-то часть самцов будет съедена хищниками, но зато оставшиеся в живых, имея больше шансов на скрещивание, смогут оставить больше потомства.

И с дрейфом генов тоже все непросто. Дрейф генов может приводить к увеличению изменчивости, то есть нарушать генетическое равновесие в пределах вида в целом, но он также может уменьшать изменчивость в пределах конкретной популяции, «убирая» из нее новые генотипы, появившиеся в результате мутаций. Здесь все зависит от размеров популяции (обратите внимание на то, что под размером популяции биологи подразумевают число особей в ней, а не размер занимаемой ею территории). Согласно общестатистическим правилам, в которые мы вникать не станем, в больших популяциях дрейф генов будет обеспечивать генетическую стабильность, а в малых станет ее нарушать, вплоть до создания преимуществ для признаков, нетипичных для основной, «материнской» популяции. В результате дрейфа генов в маленьких популяциях новые виды появляются в ускоренном темпе.

С механизмами, нарушающими генетическое равновесие в популяциях, вроде бы все ясно. В процессе мутагенеза гены изменяются, а приток генов из других популяций может приносить в популяцию нетипичные для нее гены. Перенос генов между популяциями стирает генетические различия между ними, но нарушает равновесие в каждой из них.

Интенсивность естественного отбора в популяции пропорциональна разнообразию приспособительных признаков в ней, а это разнообразие, в свою очередь, пропорционально количеству размножающихся особей[62].

И вот вам напоследок сразу два вопроса, потому что в предыдущей главе вопроса не было.

Вопрос первый: могут ли эффекты основателя и бутылочного горлышка действовать одновременно?

Вопрос второй: каким животным приходится ежегодно проходить через «бутылочное горлышко»?

Перейти на страницу:

Все книги серии Наука для вундеркинда

Генетика на пальцах
Генетика на пальцах

Генетику принято считать трудной для понимания, но на самом деле все логичное понять легко, если двигаться в правильном направлении – от простого к сложному. Эта книга как раз так и написана. Она познакомит вас с основами генетики и многочисленными способами ее практического применения, а также даст научные ответы на имеющиеся у вас вопросы.Чем ДНК отличается от РНК? Сколько разновидностей белков синтезируется в организме человека? Как передаются мутации? Какова вероятность наследственной предрасположенности к тем или иным заболеваниям? Когда рождается мальчик, а когда – девочка? В чем суть естественного отбора? Как произошли вирусы? Ответы на эти и другие вопросы вы найдете в этой увлекательной книге.В формате PDF A4 сохранен издательский макет.

Андрей Левонович Шляхов

Биология, биофизика, биохимия / Учебная и научная литература / Образование и наука

Похожие книги

Будущее мозга. Как мы изменимся в ближайшие несколько лет
Будущее мозга. Как мы изменимся в ближайшие несколько лет

Мы разговариваем друг с другом в любой точке мира, строим марсоходы и примеряем виртуальную одежду. Сегодня технологии настолько невероятны, что уже не удивляют. Но неужели это все, на что способно человечество?Книга всемирно известного нейробиолога Факундо Манеса и профессора социолингвистики Матео Ниро раскроет настоящие и будущие возможности нашего мозга. Авторы расскажут о том, что человек смог достичь в нейронауке и зачем это нужно обществу.Вы узнаете, как современные технологии влияют на наш ум и с помощью чего можно будет победить тяжелые заболевания мозга. Какие существуют невероятные нейротехнологии и почему искусственному интеллекту еще далеко до превосходства над человеком. Ученые помогут понять, как именно работает наш мозг, и чего еще мы не знаем о себе.

Матео Ниро , Факундо Манес

Биология, биофизика, биохимия / Научно-популярная литература / Образование и наука
Расширенный фенотип
Расширенный фенотип

«Расширенный фенотип» – одна из лучших книг известного учёного и видного популяризатора науки Ричарда Докинза. Сам автор так сказал про неё в предисловии ко второму изданию: «Думаю, что у большинства учёных – большинства авторов – есть какая-то одна публикация, про которую они говорили бы так: не страшно, если вы никогда не читали моих трудов кроме "этого", но "этот" пожалуйста прочтите. Для меня таким трудом является "Расширенный фенотип"». Помимо изложения интересной научной доктрины, а также весьма широкого обзора трудов других исследователей-эволюционистов, книга важна своей глубоко материалистической философской и мировоззренческой позицией, справедливо отмеченной и высоко оцененной в послесловии профессионального философа Даниэла Деннета.

Ричард Докинз

Биология, биофизика, биохимия
Экология: конспект лекций
Экология: конспект лекций

Непосредственной сдаче экзамена или зачета по любой учебной дисциплине всегда предшествует достаточно краткий период, когда студент должен сосредоточиться, систематизировать СЃРІРѕРё знания. Выражаясь компьютерным языком, он должен «вывести информацию из долговременной памяти в оперативную», сделать ее готовой к немедленному и эффективному использованию. Специфика периода подготовки к экзамену или зачету заключается в том, что студент уже ничего не изучает (для этого просто нет времени): он лишь вспоминает и систематизирует изученное.Предлагаемое РїРѕСЃРѕР±ие поможет студентам в решении именно этой задачи применительно к курсу «Экология».Содержание и структура РїРѕСЃРѕР±ия соответствуют требованиям Государственного образовательного стандарта высшего профессионального образования.Р

Анатолий Алексеевич Горелов

Биология, биофизика, биохимия / Биология / Образование и наука