Читаем Геометрия скорби. Размышления о математике, об утрате близких и о жизни полностью

Но в отличие от нее четырехмерная геометрия, казалось бы, не укоренена в нашем опыте, поэтому часто она считается сложной для понимания. Прекрасным введением в этот предмет может стать книга математика Томаса Банхоффа «По ту сторону третьего измерения: геометрия, компьютерная графика и высокая размерность»[24]. Среди множества способов представления четырехмерного куба (или гиперкуба) Банхофф описывает метод развертки. Куб (то есть его поверхность, а не внутренняя сторона) имеет развертку в виде шести квадратов, что и продемонстрировано на рисунке слева. Гиперкуб, как показывает Банхофф, разворачивается в виде восьми кубов, что видно на рисунке справа. Но почему граница гиперкуба состоит из восьми кубов? Объяснение будет дано в приложении, но, возможно, вас удовлетворит такая последовательность: граница (двумерного) квадрата состоит из четырех (одномерных) отрезков, а граница (трехмерного) куба – из шести квадратов, так что границей (четырехмерного) гиперкуба являются восемь кубов.

Известно, что Дали увлекался наукой и математикой; Банхофф лично и посредством переписки обсуждал с ним вопросы четырехмерной геометрии. Искусство и геометрия – хорошие союзники. На картине Дали «Распятие» (1954), набросок с которой приведен на следующей странице, крест представлен в виде развертки гиперкуба[25].



Чем не повод начать изучать геометрию? Вы можете даже пообщаться с Дали. Ладно, пусть не с самим Дали – он умер в 1989 году, – а с какой-нибудь другой знаменитостью. Я часто тусовался за кулисами «Шуберт Театра» в Нью-Хэйвене с актером Деметри Мартином, известным своим участием в программе «Дэйли Шоу», потому что он учился у меня фрактальной геометрии.

* * *

Ради последнего примера мы перенесемся где-то на 2300 лет назад, в Александрию, на родину греческого математика Евклида. Поскольку именно он заложил основы геометрии.



Наука, которую мы изучаем в школе, называется «евклидова геометрия». Все ее разделы – построения, масса теорем о треугольниках и всё остальное – вытекают из пяти аксиоматических предпосылок, так называемых евклидовых постулатов. Первые четыре просты и очевидны: любую пару точек можно соединить прямой линией, отрезок линии можно бесконечно продлевать по прямой, любой отрезок прямой является радиусом окружности, все прямые углы равны между собой.

Пятый, называемый «аксиомой параллельности», – постулат иного рода. Он гласит: для любой точки P, не лежащей на линии L, существует только одна линия M, проходящая через P, которая не соприкасается с линией L. Мы говорим, что M параллельна L. Это логично: если хоть немного наклонить линию M в том или ином направлении, в конце концов она пересечется с линией L.

Постулат параллельности отличается от четырех других евклидовых постулатов, он более сложен. В XIX веке некоторые математики попытались доказать, что пятый постулат вытекает из первых четырех. Их попытки были обречены на провал, поскольку существуют системы геометрии – так называемая неевклидова геометрия, – для которых аксиома параллельности является ложной[26].

При создании ксилографии «Предел – круг III» (1959) М. К. Эшер использовал неевклидову геометрию[27]. Долгое время художник экспериментировал, пытаясь разными способами представить бесконечность в конечном пространстве. Шахматная мозаика подразумевает бесконечное повторение паттерна, однако в работе Эшера бесконечность не просто подразумевается.



Художник нашел решение благодаря «диску Пуанкаре», придуманному блестящим французским математиком Анри Пуанкаре. Внутри такого диска заключена вся бесконечность плоскости: по мере приближения к его краю (если говорить о приближении в смысле привычной нам евклидовой геометрии) линейка сжимается. Расстояние от центра диска до его края, измеренное линейкой Пуанкаре, будет фактически бесконечным. А площадь диска Пуанкаре также бесконечна. И это не единственное отличие от геометрии Евклида. В диске Пуанкаре прямые линии представлены двумя формами: в виде прямых линий, проходящих через центр диска, и в виде дуг окружностей, которые пересекают его границу под прямыми углами.

Перейти на страницу:

Похожие книги

Анализ личности
Анализ личности

Вильгельм Райх (1897-1957) основатель телесно-ориентированной психотерапии. Закончив медицинский факультет Венского университета, он увлекся психоанализом и стал первым клиническим ассистентом 3. Фрейда, а затем вице-директором психоаналитической клиники в Вене. Талантливый клиницист и исследователь, обладавший великолепной интуицией, В. Райх создал новое и очень перспективное направление в психотерапии, значение которого осознается только сейчас. Данная книга является основным трудом В. Райха, в котором дается теоретическое обоснование телесно-ориентированной терапии и его оригинальный взгляд на структуру личности.Книга представляет большой интерес для психологов, психотерапевтов и для широкого круга читателей, интересующихся проблемами личностного роста. На русский язык переводится впервые.

Вильгельм Райх

Психология и психотерапия / Психология / Образование и наука