Именно здесь находится ключевая точка нашего рассуждения. Действительно ли мир такой, каким мы его представляем, или он другой? Должен ли мир быть лишь чем-то одним, или он являет собой множество? Если у нас уже есть определенное представление о мире, оно навсегда отсекает возможности увидеть его другими способами? В квантово-механической модели множественности миров, наглядно описанной в прекрасной книге Шона Кэрролла[29]
«Квантовые миры и возникновение пространства-времени», любое наблюдение за любой из частиц расщепляет Вселенную на ответвления, у каждого из которых будет свой результат измерения, и эти ветви не могут между собой сообщаться[30]. Таким образом, в физике мы имеем модель, где каждый выбор отсекает от нас все другие. Но действует ли данное разделение в мире людей, в мире облаков, в кошачьем мире? В дальнейшем мы об этом поразмышляем.Это возвращает нас к теме скорби, реакции на безвозвратную утрату. Неужели вдумчивое изучение геометрии необратимым образом накладывает печать на наши представления о формах мироздания? В математике фантазия гораздо сильнее приближена к исследованию, чем в естественных науках. Здесь, как и в любой науке, необходимо приобрести базовые навыки. Однако математика избавляет от необходимости придумывать эксперименты, монтировать оборудование, проходить этическую экспертизу тех, кто намерен ставить опыты на живых объектах, подвергаться проверкам на безопасность и затем проводить эксперимент, собирать данные, и расшифровывать его результаты. В математике вы просто начинаете размышлять. Ну хорошо, в наше время порой вам приходится писать код, запускать процесс моделирования, но это тоже умственный процесс, а не физический, если не считать набора кода на клавиатуре компьютера. Мы изучаем миры, находящиеся у нас в голове. Исследуя какой-то один мир, мы отсекаем все остальные потенциальные миры, и эта утрата становится источником скорби при изучении математики. Это, конечно, не такая большая скорбь, какую мы ощущаем, потеряв близкого человека или питомца, но, тем не менее, тоже горькое чувство.
Вы можете подумать: как это глупо. Да и что такое – утрата? Разве мы не можем изменить направление своих мыслей в любой момент? В какой-то степени да, но стоит нам посмотреть на мир новым взглядом, и мы уже не можем избавиться от собственного ви́дения. Для наглядности приведу пример из фрактальной геометрии. Если вы не фанат геометрии, можете заменить ее любой другой столь же сложной и утонченной сферой деятельности по вашему вкусу.
Пока что не обращайте внимания на линии решетки, расчерчивающие рисунок на следующей странице. По-вашему, это простая или сложная фигура? Если она кажется вам простой, значит, вы можете точно объяснить, как ее нарисовать. Готовы?
А теперь посмотрите на решетку. Обратите внимание, что пять квадратов пусты. Оказывается, это почти всё, что нам требуется знать: стоит присмотреться к этим пустым квадратам, и мы сможем дорисовать всю фигуру. Это совсем несложно.
Начнем с решетки четыре на четыре квадрата. Сначала оставим пять пустых квадратов и полностью закрасим остальные одиннадцать. Получим картинку, изображенную на следующей странице первой в верхнем ряду. Затем уменьшим ее вдвое, скопируем и разместим одну копию слева, а две другие над первыми двумя. Результат представлен на картинке в центре первого ряда. Наконец из данной картинки вырежем пять больших квадратов, как это сделано на первой картинке. Получилась картинка справа.
Повторяем второй и третий шаги, каждый раз изменяя только что созданную картинку: берем последнее полученное изображение; уменьшаем его в два раза; копируем и размещаем одну копию слева, а две другие над первыми двумя и, наконец, вырезаем пять квадратов, как это было на самой первой картинке. На предыдущей странице вы видите, как начальное изображение изменяется на протяжении первых пяти повторений данного процесса. С каждым повторением фигура приближается к той, которую я показал вам в самом начале. Можно заметить, что малые элементы фигуры похожи на всю фигуру в целом. Если вы решили, что перед вами фрактал, так и есть[31]
.Можно это представить как «фрактальную скуль-птуру». Говорят, Микеланджело утверждал, будто внутри каждого камня заключена скульптура. Мы только что продемонстрировали – для создания данного фрактала нужен лишь набор пустых квадратов и ряд повторяющихся действий. Получившаяся фигура может казаться сложной, но с этой точки зрения она проста. Не стоит удивляться, что то, насколько сложным выглядит объект, зависит от инструментов, с помощью которых мы его анализируем.