Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Заключение о том, что рассуждения невозможны, неприложимо к людям, поскольку всем известно, что людям все-таки удается проводить множество рассуждений, несмотря на все высшие уровни. Это показывает, что люди функционируют, не нуждаясь в правилах: Люди — это пример «неформальной системы». С другой стороны, этот аргумент действителен, когда мы применяем его против механических рассуждающих систем, поскольку они всегда подчиняются правилам. Такие системы не смогут начать работать, пока у них не будет мета-правил, указывающих им, когда применять правила, мета-мета-правил, говорящих, когда применять мета-правила, и так далее. Таким образом, мы можем заключить, что умение рассуждать не может быть воплощено в машине, — это исключительно человеческая черта.

Где в этих доводах ошибка? В предположении, что машина не способна начать действовать без правила, говорящего ей, как это сделать. В действительности, машины обходят глупые Черепахины возражения так же легко, как и люди, и по той же самой причине: как люди, так и машины сделаны из аппаратуры, которая действует сама по себе, согласно законам физики. Вовсе не надо опираться на «правила, говорящие, как использовать правила», поскольку правила низшего уровня — не имеющие никаких «мета» перед ними — встроены в саму аппаратуру и действуют самостоятельно. Вывод: Диалог Кэрролла ничего не говорит нам о разнице между людьми и машинами. (На самом деле рассуждения возможно механизировать.)

Теперь перейдем к доводам Самуэля. В карикатурном изображении, его точка зрения сводится к следующему:

Нельзя сказать, что компьютер «хочет» что-либо сделать, поскольку он был запрограммирован кем-то другим. Только в том случае, если бы он мог запрограммировать сам себя, начиная с нуля, мы могли бы сказать, что компьютер обладает собственной волей.

В своих доводах Самуэль встает на позицию Черепахи, заменяя «рассуждения» на «волю». Он хочет сказать, что за любым механизмом желания должен стоять либо бесконечный регресс, либо, что еще хуже, закрытая петля. Если у компьютеров нет собственной воли именно по этой причине, то что можно сказать о людях? Тот же самый критерий позволяет заключить, что:

человек обладает собственной волей только тогда, когда он сделал себя сам и выбрал собственные желания (а также выбрал выбор собственных желаний и так далее).

Это заставляет нас хорошенько подумать над тем. откуда появляются наши желания. Если вы не верите в наличие души, то. возможно, скажете, что они зарождаются в вашем мозгу — аппаратуре, которую вы не создавали и не выбирали. Тем не менее, от этого ваше чувство, что вы желаете чего-то определенного, не становится слабее. Вы — вовсе не «само-программирующий объект» (что бы это ни значило); тем не менее у вас все же есть собственная воля, зарождающаяся на физическом уровне вашего интеллекта. Таким же образом, у машин когда-нибудь будет собственная воля, несмотря на тот факт, что никакая магическая «само-программирующая» программа не появляется в их памяти из ничего, словно по мановению волшебной палочки. У них будет воля по той же причине, что и у людей — как следствие организации и структуры многих уровней аппаратуры и программного обеспечения. Вывод: доводы Самуэля ничего не говорят нам о разнице между людьми и машинами. (На самом деле, волю возможно механизировать.)

Любая запутанная иерархия основана на неизменном уровне

Сразу после «Двухголосной инвенции» я написал, что центральной темой этой книги будет обсуждение вопроса «подчиняются ли слова и мысли формальным правилам?» Одной из моих основных задач было показать многоуровневость интеллекта и мозга и объяснить, почему конечным ответом на этот вопрос является «да, если спуститься на низший уровень — уровень аппаратуры — и найти там правила.»

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное