Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Возможно пойти гораздо дальше, если убрать опорные ориентиры. Начнем действовать постепенно… Сначала сведем весь набор досок к одной-единственной доске. Что это означает? Что эту доску можно будет интерпретировать двояко как (1) фигуры, которые надо двигать и (2) правила ходов. Игроки, двигающие фигуры, тем самым меняют правила! Таким образом, правила постоянно меняют сами себя. Здесь слышен отголосок типогенетики (и настоящей генетики!) Различие между игрой, правилами, мета-правилами и мета-мета-правилами оказывается стерто. То, что когда-то было четкой иерархической системой, превратилось в Странную Петлю или Запутанную Иерархию. Ходы меняют правила, правила определяют ходы — и так далее, по кругу. Здесь все еще есть различные уровни, но разница между «высшими» и «низшими» уровнями уже исчезла.

При этом часть того, что раньше было неприкасаемым, стало возможно модифицировать. Но в системе все еще осталось множество неизменных вещей. Так же как и раньше, между вами и вашим противником существуют некие соглашения, при помощи которых вы интерпретируете доску как определенный набор правил, соглашение играть по очереди и другие негласные условия. Заметьте, что теперь понятие различных уровней изменилось довольно неожиданным образом. У нас есть Неизменный уровень — давайте назовем его уровень Н — на котором находятся соглашения, касающиеся интерпретации, и Запутанный уровень — уровень З — на котором находится Запутанная Иерархия. Эти два уровня все еще иерархичны: уровень Н управляет тем, что происходит на уровне З, в то время как уровень З не затрагивает и не может затронуть уровня Н. Несмотря на то, что сам уровень З представляет из себя Запутанную Иерархию, он все же подчиняется набору правил, находящихся за его пределами. Это очень важный момент.

Как вы, несомненно, уже предположили, ничто не мешает нам сделать «невозможное» — а именно, соединить уровень Н с уровнем 3. Для этого надо только поставить сами условия интерпретации в зависимость от положения на шахматной доске. Однако для того, чтобы провести подобное «сверх-соединение», вам и вашему противнику придется выработать некие новые соглашения, соотносящие два уровня — и это создаст новый неизменный уровень сверху «сверхсмешанного» (или под ним, если вам так больше нравится). И это может продолжаться до бесконечности. «Скачки», которые при этом совершаются, напоминают те, что были описаны в Диалоге «Праздничная Кантатата» и в повторной Гёделизации, примененной к разнообразным улучшенным вариантам ТТЧ. Каждый раз, когда вам кажется, что вы подошли к концу, возникает новый вариант выхода из системы; чтобы его заметить, нужно некоторое творческое воображение.

Снова авторский треугольник

Я не собираюсь здесь прослеживать эту странную тему усложняющихся комбинаций систем, которые могут возникнуть в само-изменяющихся шахматах. Моей целью было показать читателю графически, что в каждой системе есть некий «защищенный» уровень, на который не действуют правила других уровней, какими бы запутанными не были их взаимодействия между собой. Забавная загадка из главы IV иллюстрирует эту мысль в немного ином контексте. Может быть, она застанет вас врасплох:


Рис. 134. «Авторский треугольник».

Перед нами три автора: З, Ч и Э. З существует только в романе, написанном Ч. Аналогично, Ч — только герой романа, написанного Э. Что удивительно, Э — тоже не более как персонаж романа — чей автор, естественно, З. Может ли существовать такой авторский треугольник?

Разумеется, может! Но для этого все трое должны быть персонажами четвертого романа, написанного X. Можно сказать, что З-Ч-Э представляет из себя Странную Петлю или Запутанную Иерархию, а автор X находится в неизменном пространстве, вне той системы, в которой происходит эта путаница. Хотя З, Ч и Э имеют прямой или косвенный доступ друг к другу и могут напакостить один другому в своих романах, ни один из них не может затронуть жизнь X. Они даже не могут вообразить его, так же, как вы не в состоянии представить себе автора того романа, который выдумал в качестве своего героя вас. Если бы я хотел ввести в схему автора X, я нарисовал бы его вне страницы. Разумеется, это было бы проблематично, поскольку изображение предмета с необходимостью помещает его на странице… Так или иначе, X в действительности находится вне мира, в котором обитают З, Ч и Э, и должен быть представлен соответствующим образом.


Рис. 135. М. К. Эшер. Рисующие руки, (литография, 1948).


Эшеровы «Рисующие руки»

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное