Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Точка зрения Самуэля затронула некую тему, которую я хочу обсудить подробнее. Вот она: думая, мы, безусловно, меняем наши мысленные правила, а также правила, меняющие правила, и так далее — но это, образно говоря, правила «программ». При этом фундаментальные правила, правила «аппаратуры», остаются неизменными. Нейроны всегда действуют одинаково. Мы не можем уговорить нейроны повести себя «ненейронным» образом; все, что нам удается сделать, это поменять тему или стиль наших мыслей. Подобно Ахиллу в «Прелюдии» и «Муравьиной фуге», мы имеем доступ только к нашим мыслям, а не к нейронам. Правила программ могут варьироваться на разных уровнях — правила аппаратуры всегда остаются одними и теми же. Именно этим фактом и объясняется гибкость программ! Это вовсе не парадокс, а фундаментальный, простой факт, касающийся механизмов разума.

Именно различие между само-модифицирующимися программами и неизменной аппаратурой будет темой последней главы этой книги. Некоторые из последующих вариаций на это тему могут показаться довольно надуманными; однако надеюсь, что к тому моменту, когда я завершу цикл, вернувшись к мозгу, интеллекту и чувству самосознания, вы сможете увидеть неизменную основу в каждой из этих вариаций.

В этой главе я хочу поделиться с читателем теми образами, которые помогают мне понять, каким образом сознание вырастает из джунглей нейронов. Надеюсь, что эти интуитивные образы окажутся полезными и немного помогут читателям в определении их собственных представлений о том, что заставляет функционировать разум. Может быть, возникающие в моем мозгу туманные образы мозга и образов послужат катализатором для образования более четких образов мозга и образов в мозгу моих читателей.

Модифицирующаяся игра

Итак, первая вариация: игры, в которых очередной игрок может изменять правила. Представьте себе шахматы. Ясно, что правила здесь остаются неизменными, а меняется только позиция на доске после каждого хода. Но давайте теперь рассмотрим такой вариант шахмат, в котором очередной игрок имеет право либо сделать ход, либо поменять правила. Каким образом? Произвольно? Можно ли превратить шахматы, скажем, в шашки? Понятно, что подобная анархия была бы бессмысленна — должны существовать некоторые ограничения. Например, в одной из версий будет позволено изменять ход коня: вместо «1 и затем 2» конь будет передвигаться на «m» и затем «n» клеток, где m и n — любые натуральные числа; очередной игрок сможет увеличивать или уменьшать на 1 либо m либо n. Таким образом, ход коня сможет меняться от 1-2 до 1-3, до 0-3, до 0-4, до 0-5. до 1-5, до 2-5… Вместо этого могут существовать правила, модифицирующие ход слона и других фигур. Другие правила могут добавлять новые клетки к доске, или стирать старые…

У нас будет два уровня правил, одни говорят нам, как ходят фигуры, и другие — как изменяются правила. Таким образом, у нас есть правила и мета-правила. Следующий шаг очевиден: введение мета-мета-правил, говорящих нам, как менять мета-правила. Однако вовсе не очевидно, как именно это сделать. Правила, меняющие ходы фигур, придумать легко, поскольку фигуры двигаются в формализованном пространстве шахматной доски. Если бы нам удалось придумать простую формальную запись для правил и мета-правил, тогда обращаться с ними стало бы так же легко, как с цепочками формул или даже с шахматными фигурами. Доводя эту идею до логической крайности, мы могли бы представить, что правила и мета-правила могут быть изображены в виде позиций на вспомогательной шахматной доске. Тогда каждая позиция сможет, в зависимости от вашей интерпретации, быть понята как момент игры, набор правил или набор мета-правил. Разумеется, оба игрока должны будут заранее договориться о том, как интерпретировать нотацию.

В этой игре у нас может быть любое количество дополнительных досок: доска для игры, для правил, для мета-правил, для мета-мета-правил и так далее, пока нам не надоест. Очередной игрок может ходить на любой из этих досок, кроме доски самого высшего уровня. Правила при этом определены доской «ступенькой выше». Несомненно, оба игрока вскоре запутаются из-за того, что почти все — но не всё! — может меняться. По определению, доска высшего уровня должна оставаться неприкасаемой, поскольку у вас нет правил, говорящих вам, как ее менять. Это — неизменный уровень. Неизменны также условия, по которым изменяются другие доски, соглашение играть по очереди, условие, что очередной игрок может менять что-то только на одной из досок — вы найдете здесь и другие неизменные элементы, если рассмотрите эту идею более подробно.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное