Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Другая классическая вариация на эту тему — картина Эшера «Рисующие руки» (Рис. 135). Здесь левая рука (ЛР) рисует правую руку (ПР), в то время как ПР рисует ЛР. Снова уровни, обычно понимаемые как иерархические — рисующее и рисуемое — замыкаются друг на друга, создавая Запутанную Иерархию. Этот пример, разумеется, подтверждает идею данной главы, поскольку за ним стоит ненарисованная, но рисующая рука самого Эшера — создателя как ЛР, так и ПР. Эшер стоит вне пространства этих рук, и это хорошо видно на рис. 136. В верхней части этого схематического варианта картины Эшера вы видите Странную Петлю или Запутанную Иерархию, а в нижней — Неизменный уровень, позволяющий ее существование. Мы могли бы еще раз «Эшеризировать» картину Эшера. сфотографировав рисующую ее руку… и так далее.


Рис. 136. Абстрактная диаграмма, представляющая картину Эшера «Рисующие руки». Внизу приведено ее решение.


Мозг и разум: переплетение нейронов, лежащее в основе переплетения символов

Теперь мы можем соотнести эту картину с мозгом, а также с программами ИИ. Когда мы думаем, символы в нашем мозгу активируют другие символы, и все они взаимодействуют гетерархически. Более того, символы могут заставить друг друга измениться внутренне и стать чем-то вроде программ, действующих на другие программы. Благодаря Запутанной Иерархии символов, у нас создается иллюзия, что неизменяемого уровня в мозгу не существует. Мы думаем, что подобного уровня нет, потому что он для нас невидим.

Если бы было возможно изобразить это схематически, получился бы гигантский лес символов, соединенных друг с другом перепутанными линиями, вроде лиан в джунглях. Это — высший уровень, где рождаются и развиваются мысли, тот ускользающий уровень разума, который аналогичен рисующим друг друга рукам. Внизу на схеме помещалось бы изображение мириад нейронов — «неизменного субстрата,» лежащего в основе переплетения символов и аналогичного «движущей силе» — Эшеру. Интересно, что в буквальном смысле сам этот нижний уровень тоже представляет из себя переплетение: миллиарды клеток и сотни миллиардов аксонов, соединяющих клетки между собой.

В этом интересном случае сложное переплетение на уровне программ основано на переплетении на уровне самой аппаратуры — нейронов. Но Запутанной Иерархией можно назвать лишь переплетение символов. Переплетение нейронов — это «простое» переплетение. Это различие подобно разнице между Странными Петлями и обратной связью, которое я описал в главе XVI. Запутанная Иерархия получается тогда, когда строго иерархичные на первый взгляд уровни внезапно начинают действовать друг на друга в нарушение всех правил иерархии. Элемент неожиданности здесь очень важен; именно поэтому я называю Странные Петли «странными». Простое переплетение, такое, как обратная связь, не нарушает установленных различий между уровнями. Например, когда вы стоите под душем и моете правую руку левой рукой и наоборот, это в порядке вещей. Эшер не случайно решил нарисовать руки, рисующие руки!

События, подобные моющим друг друга рукам, случаются в мире очень часто, и мы их обычно не замечаем. Я говорю что-то вам, а вы в ответ говорите что-то мне. Парадокс? Вовсе нет; наше восприятие друг друга с самого начала не включает никакой иерархии, поэтому здесь нет ничего странного.

С другой стороны, в языке получаются странные петли тогда, когда он прямо или косвенно говорит сам о себе. При этом нечто, лежащее внутри системы, выходит из нее и воздействует на систему так, словно оно находится вовне. Возможно, что нас смущает некое неопределенное чувство топологической неправильности: стирание различия между внутренним и внешним, как в знаменитой «бутыли Клейна». Хотя система абстрактна, наш мозг создает для нее пространственный образ с некоторой мысленной топологией. Вернемся к путанице символов. Если глядеть только на нее и игнорировать нейронный фундамент, то в ней можно увидеть самопрограммирующий объект — точно так же, как глядя на «Рисующие руки», мы видим саморисующую картину и на мгновение верим этой иллюзии, забывая об Эшере. В случае картины эта иллюзия рассеивается мгновенно — но в случае человеческого разума она оказывается весьма стабильной. Мы чувствуем, что мы самопрограммирующие. Более того, мы и не можем чувствовать иначе, поскольку мы защищены от низшего уровня, уровня нейронных сплетений. Нам кажется, что наши мысли живут в своем собственном пространстве, создавая новые мысли и изменяя старые; мы не замечаем помогающих этому нейронов! Но так и должно быть. Мы просто не можем их заметить.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное