Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Все мы любим изобретать поговорки, которые, нарушая основные законы арифметики, иллюстрируют некие более глубокие «истины»: «1 да 1 равно 1» (любовники) или «1 плюс 1 плюс 1 равно 1» (святая Троица). Можно легко найти изъяны в подобных «формулах» — скажем, показав, что употребление знака «плюс» в них неверно. Так или иначе, подобных высказываний множество. По забрызганному дождем оконному стеклу сползают две капли; у самой рамы они сливаются в одну. Значит ли это, что 1 + 1 = 1? Из одного облака рождаются два; не доказательство ли это той же идеи? Отличить случаи, в которых мы можем говорить о сложении, от тех, где нам нужно какое-то другое понятие, не так-то просто. Размышляя об этом, мы, возможно, додумаемся до таких критериев, как разделение объектов в пространстве и их четкое отличие друг от друга. Но как подсчитать идеи? Или количество газов в атмосфере? Во многих источниках можно встретить высказывания типа: «В Индии 17 языков и 462 диалекта». В точных утверждениях такого рода есть нечто странное, так как сами понятия «язык» и «диалект» довольно расплывчаты.

Идеальные числа

В повседневном мире числа часто ведут себя плохо. Однако у людей имеется врожденное, пришедшее из древности чувство, что этого быть не должно. В абстрактном понятии числа, взятого вне связи с подсчетом бусинок, диалектов или облаков, есть нечто чистое и точное; должен существовать способ говорить о числах, не примешивая к ним глупую повседневность. Твердые правила, управляющие идеальными числами, являются основой арифметики, в то время как их следствия лежат в основе теории чисел. При переходе от чисел как объектов повседневной жизни к числам как объектам формальной системы возникает следующий важный вопрос: возможно ли заключить всю теорию чисел в рамки одной формальной системы? Действительно ли числа так чисты, ясны и регулярны, что их природа может быть полностью описана правилами какой-либо формальной системы? Картина «Освобождение», одно из самых прекрасных произведений Эшера, иллюстрирует этот удивительный контраст между формальным и неформальным и поразительную зону перехода между ними. Действительно ли числа свободны, как птицы? Страдают ли они, уловленные в тесную клетку формальной системы? Существует ли магическая зона перехода между числами, используемыми в повседневной жизни, и числами, написанными на бумаге?

Говоря о свойствах натуральных чисел, я имею в виду не только такие свойства, как, скажем, сумма определенной пары чисел. Ее легко можно подсчитать; никто из нас, выросших в двадцатом веке, не сомневается в возможности механизации таких процессов, как подсчет, сложение, умножение, и т. д. Я имею в виду такие свойства чисел, исследованием которых занимаются математики и для познания которых не достаточно, даже теоретически, никакого подсчета. Рассмотрим классический пример: утверждение «существует бесконечно много простых чисел». Прежде всего, не существует такого метода подсчета, который мог бы доказать или опровергнуть это утверждение. Лучшее, что мы можем сделать, — это затратить некоторое время на подсчет простых чисел и заключить, что их действительно имеется «целая куча». Однако никакой подсчет не скажет нам того, конечно или бесконечно количество простых чисел; любой подсчет всегда останется неполным. Это утверждение, называющееся «Теорема Эвклида» (обратите внимание на заглавную «Т»), совсем не очевидно. Однако со времен Эвклида все математики считают его истинным. В чем же дело?

Рис. 13. М. К. Эшер «Освобождение» (литография, 1955)

Доказательство Эвклида

Дело в том, что этот факт следует из неких рассуждений. Давайте проследим за этими рассуждениями. Рассмотрим вариант доказательства Эвклида, показывающий, что какое бы число мы ни взяли, всегда найдется большее простое число. Возьмем число N. Перемножим все положительные целые числа, начиная с 1 и кончая N; иными словами, найдем факториал N (он пишется «N!») Полученный результат делится на все числа, меньшие чем N. Если прибавить 1 к N!, то результат

не будет делиться на 2 (так как при делении на 2 получится 1 в остатке);

не будет делиться на 3 (так как при делении на 3 получится 1 в остатке);

не будет делиться на 4 (так как при делении на 4 получится 1 в остатке);

.

.

.

не будет делиться на N (так как при делении на N получится 1 в остатке);

Другими словами, если N!+1 и делимо на какое-то число, кроме самого себя и единицы, оно делимо только на числа, большие, чем N. Следовательно, либо N!+1 само простое число, либо его простые делители больше N. В любом случае, мы показали, что должно существовать простое число, большее N, и что, следовательно, количество простых чисел бесконечно.

Кстати, этот последний шаг называется обобщением; мы еще встретимся с этим понятием в более сложном контексте. Оно заключается в том, что, начав наши рассуждения с какого-либо числа N, мы указываем, что N может быть любым числом — следовательно, наше доказательство носит общий характер.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное