Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Это напоминает известное разграничение между рисунком и фоном в живописи. Когда предмет или «положительное пространство» (например, человеческая фигура, буква или натюрморт) рисуется внутри рамки, неизбежным следствием этого является появление на картине дополняющей формы, также называющейся «фоном», или «негативным пространством». В большинстве картин отношение между фоном и рисунком почти не играет роли; как правило, художник в основном занят рисунком. Однако иногда его внимание привлекает также и фон.

Существуют замечательные шрифты, обыгрывающие это различие между рисунком и фоном. Послание, написанное таким шрифтом, приводится ниже. На первый взгляд это просто несколько клякс; но если вы посмотрите на них издали, попристальнее, то увидите семь букв на этом РИСУНКЕ (специальным шрифтом, так, что черный фон, создающий белые буквы, похож на кляксы.)

Рис. 15. Рисунок

Такой же эффект производит мой рисунок «Знак из дыма» (рис. 139). Продолжая в том же ключе, попробуйте решить следующую задачку: возможно ли нарисовать такую картину, чтобы слова были как на рисунке, так и в фоне?

Давайте условимся различать между двумя типами рисунков: курсивно рисуемыми и рекурсивными (эти термины не являются общеупотребительными — их придумал я сам). В курсивно рисуемом рисунке фон является лишь побочным продуктом. В рекурсивном рисунке, наоборот, фон может рассматриваться как отдельный самостоятельный рисунок. Обычно художник делает это вполне сознательно. Приставка «ре» здесь выражает тот факт, что как рисунок, гак и фон могут быть нарисованы курсивно, то есть, такая картина «дву-курсивна». Любой контур на рекурсивном рисунке — это обоюдоострый меч. М. К. Эшер был мастером подобных картин; взгляните, например, на его великолепную рекурсивную гравюру «Птицы» (рис. 16).


Рис. 16. M. K. Эшер. «Деление пространства при помощи птиц» (из блокнота 1942 года).


Различие здесь не такое строгое, как в математике; кто может с уверенностью утверждать, что некий фон не является в то же время и рисунком? При достаточно внимательном рассмотрении, любой фон не лишен собственного интереса. В этом смысле любой рисунок можно назвать рекурсивным. Однако, вводя эти термины, я имел в виду нечто другое. Существует естественное, интуитивное понятие узнаваемых форм. Являются ли и рисунок и фон узнаваемыми формами? Если да, то такой рисунок рекурсивен. Посмотрев на фон большинства контурных рисунков, вы обнаружите, что в нем трудно признать какую-либо форму. Это доказывает, что:

Существуют узнаваемые формы, чье негативное пространство не является никакой узнаваемой формой. Или, выражаясь более технично:

Существуют курсивно рисуемые рисунки, которые не рекурсивны.

Рис. 17. Скотт Е. Ким Рисунок «РИСУНОК-РИСУНОК».


На рис. 17 показано решение предложенной выше головоломки, принадлежащее Скотту Киму; я называю это решение «рисунок РИСУНОК — РИСУНОК». На какую бы часть — белую или черную — вы не посмотрели, вы увидите только «ФИГУРЕ» (= английское «РИСУНОК»), и никакого «ФОНА». Великолепный образчик рекурсивного рисунка! Черные области этого хитроумного рисунка можно охарактеризовать двумя способами:

(1) как негативное пространство белых областей;

(2) как видоизмененные копии белых областей (полученные путем их окраски и сдвига каждой белой области).

(В данном случае обе характеристики эквивалентны; для большинства черно-белых рисунков это не так.) В главе VIII, создавая Типографскую Теорию Чисел (ТТЧ), мы будем надеяться, что нам удастся охарактеризовать множество всех ложных утверждений аналогичными способами:

(1) как негативное пространство множества всех теорем ТТЧ;

(2) как модифицированные копии множества всех теорем ТТЧ (полученные путем отрицания каждой теоремы ТТЧ).

Однако этой надежда окажется напрасной, так как:

(1) среди множества всех не-теорем существуют некоторые истинные утверждения;

(2) вне множества всех отрицаний теорем, существуют некоторые ложные утверждения.

Отчего так получается, вы увидите в главе XIV; а пока можете поразмыслить над графическим изображением данной ситуации (Рис. 18).


Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное