Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Интуиция подсказывает разным людям разные ответы. Я отчетливо помню, как был озадачен и заинтригован, заметив разницу между негативной и позитивной характеристиками. Я был совершенно уверен в том, что не только простые числа, но и вообще любое негативно определяемое множество чисел может быть определено позитивно. Интуитивное обоснование моей уверенности заключалось в следующем вопросе: «Как это возможно, чтобы рисунок и фон не содержали совершенно одинаковой информации?» Мне казалось, что они представляют собой одну и ту же информацию, закодированную двумя разными способами. А что думаете по этому поводу вы, читатель?

Выяснилось, что я был прав насчет простых чисел, но ошибался в остальном. Тогда это меня поразило и продолжает поражать и по сей день. Оказывается, что:

существуют такие формальные системы, чье негативное пространство (множество не-теорем) не является позитивным пространством никакой другой формальной системы.

Как выяснилось, этот результат сравним по глубине с Теоремой Гёделя — так что неудивительно, что моя интуиция не могла принять его сразу. Подобно математикам начала двадцатого века, я считал мир формальных систем и натуральных чисел более предсказуемым, чем он оказался в действительности. Выраженное более техническим языком, это утверждение звучит так:

Существуют рекурсивно счетные множества, не являющиеся рекурсивными.

Выражение «рекурсивно счетные» (часто сокращаемое как р.с.) — математическое соответствие нашему художественному понятию «курсивно рисуемые», а рекурсивный — соответствие «рекурсивным». Множество строчек является р. с., когда все они могут быть выведены путем применения типографских правил — например, множество теорем типа S или множество теорем системы MIU; на самом деле, это определение приложимо ко множеству теорем любой формальной системы. Оно сравнимо с понятием о «рисунке» как о «множестве линий, которые могут быть произведены в соответствии с художественными правилами» (что бы это последнее не означало!). А «рекурсивное множество» подобно рисунку, чей фон, в свою очередь, также является рисунком — в таком случае не только рисунок, но и его дополнение будут р. с. Из этого вытекает следующий результат:

Существуют такие формальные системы, у которых нет типографского алгоритма разрешения.

Из чего это следует? Очень просто. Типографский алгоритм разрешения — это метод, отличающий теоремы от не-теорем. Он позволяет нам выводить не-теоремы систематически, идя по списку всех строчек и отбрасывая те, что не являются теоремами. Эту процедуру можно назвать типографским методом вывода множества не-теорем. Однако из предыдущего утверждения (которое мы пока принимаем на веру) следует, что для некоторых формальных систем это невозможно.

Предположим, что мы нашли множество R («R» — рисунок) натуральных чисел, которое мы можем вывести каким-либо формальным путем — вроде множества составных чисел. Предположим, что его дополнением является множество F («F» — фон) — простые числа. Вместе взятые, R и F дают все натуральные числа. Мы знаем правило, позволяющее вывести все числа множества R, для чисел множества F такого правила не существует. Важно, что если числа R выводятся исключительно в возрастающем порядке, то мы всегда можем охарактеризовать F. Трудность заключается в том, что многие р. с. множества производятся при помощи таких методов, которые выводят элементы в произвольном порядке, так что не известно, появится ли какое-либо число, до сих пор пропускаемое, если подождать еще чуть-чуть.

На вопрос «Все ли рисунки рекурсивны?» мы ответили отрицательно. Теперь мы видим что придется ответить отрицательно и на аналогичный вопрос математиков «Все ли множества рекурсивны?» Имея это в виду, давайте вернемся к этому расплывчатому понятию «формы». Обратимся снова к нашим множествам R — рисунки и F — фон. Легко согласиться с тем, что все числа во множестве R имеют какую-то общую «форму» — но можно ли сказать то же самое о числах множества F? Странный вопрос. С самого начала имея дело с бесконечным множеством всех натуральных чисел, весьма сложно прямо и четко определить «дырки», остающиеся в списке после изъятия оттуда неких чисел. Таким образом, возможно что на самом деле у этих дырок нет никаких общих характеристик «формы». Неясно, стоит ли вообще использовать здесь такое соблазнительное словечко как «форма». Может быть лучше не определять этого понятия оставив ему некую интуитивную гибкость.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное