Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Черепаха: Если бы. На самом деле он решил, что следующий патефон наверняка окажется «выигрышным билетом», а поскольку у него теперь была куча денег, он.

Ахилл (перебивает): Еще раз пошел в магазин… Постойте-ка: ведь он бы мог вас запросто перехитрить, купив посредственный патефон, не воспроизводящий с достаточной точностью никакую, в том числе и разбивальную, музыку. Тогда вам пришлось бы спасовать…

Черепаха: Соблазнительная мысль. Однако она противоречит первоначальной идее иметь патефон, на котором можно воспроизвести даже его собственную разбивальную мелодию (что, естественно, невозможно).

Ахилл: Конечно Теперь я понимаю, в чем здесь загвоздка. Любой достаточно качественный патефон (назовем его X), который сможет воспроизвести разбивальную музыку, от нее же и погибнет! Значит, патефон X не совершенный. Избежать подобной участи может только какой-нибудь плохонький патефон, который, однако, уже по определению не будет Идеальным! Любой патефон будет непременно «увечен» в том или ином смысле, а значит, все они дефектны!

Черепаха: Разумеется, они не идеальны, но почему вы называете их «дефектными»? Никакой патефон не способен сделать все то, чего бы нам от него хотелось. Уж если говорить о дефектах, то изъян не в самих патефонах, а в наших представлениях о том, на что они способны. Краб, к примеру, был полон самых фантастических надежд

Ахилл: Искать Идеальный патефон — неблагодарное занятие. Купит ли Краб высококачественный или посредственный аппарат, он все равно проигрывает. Бедняга, мне его искренно жаль?…

Черепаха: В таком духе наш «поединок» с Крабом продолжался еще несколько раундов, пока Краб не раскусил принципа моих композиций. Тогда старик попытался меня перехитрить. Он послал фабрикантам описание патефона своего изобретения, который они и изготовили по его чертежам. Краб назвал свое детище «Патефон Омега» — этот аппарат был намного сложнее чем все предыдущие.

Ахилл: А, понимаю: у него вообще не было движущихся частей… Может быть, он был сделан из ваты? Или…

Черепаха: Если вы будете пытаться угадать, то мы просидим здесь до завтра. Позвольте вам помочь: «Омега» имела встроенную телекамеру, сканирующую любую пластинку, перед тем как поставить ее на патефон. Эта камера была подключена к компьютеру, который, в свою очередь, устанавливал по форме дорожек, что за музыка записана на данной пластинке.

Ахилл: Тривиальной эту конструкцию не назовешь, но пока мне все понятно. Однако как же Омега использовала полученную информацию?

Черепаха: Интереснейшим образом: компьютер при помощи сложных вычислений устанавливал, какой эффект данная мелодия произведет на патефон. Если музыка оказывалась «опасной», Омега делала что-то поистине удивительное: она меняла структуру частей патефона, перестраиваясь на ходу! Только сделавшись неуязвимой для данной разбивальной мелодии, Омега включала свой патефон и проигрывала пластинку.

Ахилл: Могу себе представить, как вы разочаровались: ведь это означало, что вашим проделкам пришел конец!

Черепаха: Я удивлена, Ахилл, что вы так считаете. Видимо, вы не слишком хорошо знакомы с теоремой Гёделя о неполноте.

Ахилл: … гммм… Чьей теоремой?

Черепаха: Имя ее создателя — Гёдель. Суть теоремы заключается в том, что…

Ахилл (перебивает): Гёдель? Не слыхал… Послушайте, я уверен, что все это захватывающе интересно, но я, право, предпочел бы услыхать продолжение истории о разбивальной музыке. Мне думается, что я могу сам угадать ее конец…

Черепаха: Рада вашей проницательности. Вы, вероятно, думаете, что Краб победил?

Ахилл: А как же! Признайтесь, что вам пришлось трусливо капитулировать. Не так ли?

Черепаха: Ей-Богу, Ахилл, ну и засиделись мы с вами! Уж полночь близится… Я с удовольствием пообщалась бы с вами еще, но у меня уже глаза слипаются.

Ахилл: То-то я чувствую, что и меня в сон клонит… Пойду я, пожалуй. (Направляется к двери, но внезапно поворачивает обратно.) Однако какой я забывчивый! Принес вам маленький презент и чуть не унес его обратно домой. (Протягивает Черепахе небольшой аккуратный сверток.)

Черепаха: Стоило ли беспокоиться… Благодарю! (Нетерпеливо распаковывает пакет.)

Ахилл: Безделушка, право слово…

Черепаха: Ах… (Срывает последнюю обертку и на свет появляется изящный стеклянный бокал.) Какая прелесть! Как вы узнали, что я прямо-таки с ума схожу по стеклянным бокалам?

Ахилл: Разве? Не имел ни малейшего понятия, но я рад, что вам понравилось.

Черепаха: Обворожительно! Послушайте, если вы умеете хранить секреты, я вам кое-что расскажу. Я пытаюсь найти Идеальный Бокал, так сказать, Генерал-бокал, Гроссмейстер-бокал, чья форма не имела бы ни малейшего изъяна. Представляете, если бы ваш подарок, назовем его Бокал Г, оказался бы искомым сокровищем! Сделайте милость, поделитесь: где вы отыскали это чудо?

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное