Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Черепаха: Разрешите вам продемонстрировать; сейчас, только принесу скрипку… (Идет в соседнюю комнату и возвращается со старинным инструментом.) Сейчас я вам, скептику, сыграю эту мелодию задом наперед, вверх тормашками, шиворот навыворот и в любом виде, в каком вашей душеньке будет угодно… Ну что ж, начнем… (Кладет на пюпитр ноты «Искусства фуги» и открывает их на последней странице.) Вот он, последний «Контрапунктус» и вот она, последняя тема.

(Черепаха начинает играть: В-А-С- … но когда она пытается взять финальное «H», внезапно, без малейшего предупреждения, резкий звук бьющегося стекла грубо прерывает ее игру.Черепаха и Ахилл оборачиваются как раз вовремя, чтобы успеть увидеть, как крохотные блестящие осколки осыпаются дождем с полки, где только что стоял Бокал Г. Затем — мертвая тишина…)

Рис. 19. Последняя страница «Искусства фуги» Баха. На подлиннике рукой сына композитора, Карла Филиппа Эммануэля, написано: «NB: Во время исполнения этой фуги, в тот момент когда прозвучала мелодия В-А-С-H, композитор скончался.» (На рисунке мелодия В-А-С-H взята в рамку) Пусть последняя страница Баховского «Контрапункта» послужит здесь как эпитафия. (Ноты отпечатаны при помощи компьютерной программы СМУТ, разработанной Дональдом Бирдом в Индианском университете США.)

ГЛАВА IV: Непротиворечивость, полнота и геометрия

Смысл явный и неявный

В главе II мы видели пример того, как смысл — по крайней мере, в относительно простом контексте формальных систем — рождается из изоморфизма между управляемыми правилами символами и вещами реального мира. В большинстве случаев, чем сложнее изоморфизм, тем больше «техники» — как аппаратуры, так и программного обеспечения — бывает необходимо, чтобы извлечь смысл из символов. Если изоморфизм очень прост (или хорошо нам знаком), то есть соблазн считать, что смысл, который мы замечаем, выражен явно. Мы видим смысл, не замечая изоморфизма. Один из самых ярких тому примеров — человеческий язык. Люди часто приписывают значения самим словам, абсолютно не осознавая существования сложного «изоморфизма», эти значения порождающего. Эту ошибку совершить нетрудно; она состоит в том, что значение приписывается скорее объекту (слову), чем связи между данным объектом и реальностью. Вы можете сравнить это с наивным представлением о том, что шум является необходимым побочным эффектом столкновения двух предметов. Это, разумеется, неверно если два предмета столкнутся в вакууме, столкновение будет совершенно бесшумным. Здесь ошибка также заключается в том, что шум приписывается исключительно столкновению, и при этом игнорируется роль среды, переносящей звук от столкнувшихся предметов к уху.

Выше я использовал слово «изоморфизм» в кавычках, чтобы показать, что его здесь надо понимать с долей скептицизма. Символические процессы, лежащие в основе человеческого языка, настолько неизмеримо сложнее символических процессов в формальных системах, что, если мы хотим по-прежнему считать, что значение — порождение изоморфизмов, то нам придется принять более гибкое определение изоморфизма, чем то, каким мы пользовались до сих пор. Мне кажется, что именно понимание природы изоморфизма, стоящего за значением, — ключ к загадке человеческого сознания.

Явный смысл «Акростиконтрапунктуса»

Все это было подготовкой к обсуждению «Акростиконтрапунктуса» — исследованию уровней его значения. В Диалоге есть как явный, так и неявный смысл. Самое явное значение — та история, которая в нем рассказана. Это «явное» значение, строго говоря, крайне неявно — ведь мозгу приходится проделать невероятно сложную работу, чтобы, основываясь на черных значках на бумаге, понять происходящие в этой истории события. Несмотря на это, мы будем считать эти события явным значением Диалога, предполагая, что любой русскоязычный читатель, извлекая смысл из значков на бумаге, использует более или менее одинаковый «изоморфизм».

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное