Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Черепаха утверждает, что никакой достаточно мощный патефон не может быть совершенен — то есть способен воспроизвести любые звуки, записанные на пластинке. Гёдель утверждает, что никакая достаточно мощная формальная система не может быть совершенна — то есть способна представить любое истинное высказывание в виде теоремы. Так же, как и в случае с патефонами, это кажется дефектом только тогда, когда мы предъявляем слишком высокие требования к возможностям формальных систем. Однако для математиков начала столетия подобные завышенные требования были обычным делом; в то время во всемогуществе логических рассуждений никто не сомневался. Доказательство обратного было найдено в 1931 году. Тот факт, что в любой достаточно сложной формальной системе истинных утверждений больше, чем теорем, называется «неполнотой» этой системы. Удивительно то, что методы рассуждения, используемые Гёделем в его доказательстве, по-видимому, невозможно заключить в рамки формальных систем. С первого взгляда кажется, что Гёделю впервые удалось выразить необычайно глубокую и важную разницу между человеческой логикой и логикой машины. Это загадочное несоответствие между мощью живых и неживых систем отражено в несоответствии между понятием «истинности» и понятием «теоремности»; таков возможный романтический взгляд на эту ситуацию.

Модифицированная система pr и противоречивость

Чтобы взглянуть на ситуацию более реалистично, нам необходимо глубже понять, почему и каким образом смысл выражается в формальных системах при помощи изоморфизма. (Мне кажется, что на самом деле это приводит к еще более романтическому взгляду на вещи.) Итак, сейчас мы приступаем к изучению некоторых новых для нас аспектов отношения между значением и формой. Первым делом, давайте создадим новую формальную систему, чуть-чуть изменив нашу старую знакомую, систему пр. Добавим к ней еще одну схему аксиом, сохранив при этом как старую схему, так и единственное правило вывода.

СХЕМА АКСИОМ II: Если x является строчкой тире, то xp-rx будет аксиомой.

Ясно, что как --p-r--, так и --p-r--- будут теоремами новой системы. Однако они интерпретируются, соответственно, как «2 плюс 1 равняется 2» и «2 плюс 2 равняется 3». Легко увидеть, что такая система будет содержать массу ложных высказываний (если считать строчку высказыванием). Таким образом, наша новая система противоречива по отношению к окружающему миру.

Как говорится, беда не приходит одна, в новой системе есть также и внутренние проблемы. Она содержит высказывания, противоречащие друг другу, такие как -p-r-- (старая аксиома) и -p-r- (новая аксиома). Это означает, что наша система противоречива также и в другом смысле — внутренне.

Так что же, лучше совсем отказаться от новой системы?

Ни в коем случае! Я нарочно описал эти «противоречия» в «лапшевешательном» стиле, изложив довольно туманные аргументы с уверенностью, призванной запутать читателя. Вполне возможно, что вы уже заметили ошибки в моих рассуждениях. Основная ошибка состоит в том, что я безоговорочно принял для новой системы ту же интерпретацию, что была верна для прежней системы. Вспомните, что мы тогда остановились на словах «плюс» и «равняется» только потому, что в такой интерпретации символы действовали изоморфно понятиям, с которыми мы их сравнивали. Когда мы изменяем правила системы, этот изоморфизм неизбежно страдает. С этим ничего не поделаешь. Таким образом, проблемы, на которые я жаловался в предыдущих абзацах, могут рассеяться как дым, как только мы найдем подходящую интерпретацию для некоторых символов новой системы. Обратите внимание, что я сказал «некоторых» — совсем не обязательно в каждом случае менять интерпретацию всех символов. Некоторые из них могут сохранить прежнее значение, в то время как другие изменятся.

Снова непротиворечивость

Предположим, например, что мы интерпретируем по-новому лишь символ r, оставляя все остальные символы без изменения; в частности, символ r будет означать «больше или равно». Теперь наши «противоречивые» теоремы -p-r- и -p-r-- звучат совершенно безобидно: «1 плюс 1 больше или равно 1» и «1 плюс 1 больше или равно 2». Мы одновременно избавились от противоречий (1) с окружающим миром и (2) внутри системы. К тому же, наша новая интерпретация значима, в то время как прежняя не имела смысла. Я имею в виду, что она не имела смысла в новой системе — в нашей первоначальной системе pr она работала превосходно. Пытаться же использовать ее в новой системе так же глупо, как использовать интерпретацию «лошадь-яблоко-счастливая» в старой системе pr.

История эвклидовой геометрии

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное