Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Не пытайся пробовать этот подход к параллельным линиям. Я прошел этот путь до самого конца. Я пережил эту бездонную ночь, погасившую всякий свет и радость в моей жизни. Молю тебя, оставь науку о параллельных прямых в покое. Я думал, что жертвовал собой во имя истины. Я был готов стать мучеником, который освободил бы геометрию от ее недостатков и, очищенную, возвратил бы ее человечеству. Я предпринял огромный, чудовищный труд; мои создания — неизмеримо лучше, чем у моих предшественников. И все же я не смог добиться полного удовлетворения. Поистине, si paullum a summo discessit, vergit ad imum . Убедившись, что ни один смертный не может достичь дна этой темной бездны, я повернул обратно, безутешный, жалея себя и все человечество… Я проплыл мимо всех рифов этого дьявольского мертвого моря, всегда возвращаясь со сломанной мачтой и разодранными в клочья парусами. Именно в это время у меня испортился характер и в жизни моей началась осень. Я легкомысленно поставил на карту мое счастье и саму мою жизнь — aut Caesar aut nihil.[9]

Однако позже, убежденный, что его сын действительно чего-то достиг, Фаркаш настоятельно советовал ему опубликовать свои результаты, правильно предвидя такую частую в науке проблему одновременности:

Когда для определенных вещей пришло время, они появляются в разных местах, подобно тому, как фиалки появляются на свет ранней весной.[10]

Насколько верным это оказалось в случае с неэвклидовой геометрией! В Германии сам Гаусс и еще несколько человек одновременно набрели на неэвклидовы идеи. Среди них были адвокат Ф. К. Швайкарт, который в 1818 году послал Гауссу письмо с описанием новой «астральной» геометрии, племянник Швайкарта Ф. А. Тауринус, который занимался неэвклидовой тригонометрией и Ф. Л. Вахтер, студент Гаусса, который умер в 1817 году в возрасте двадцати пяти лет, успев получить несколько глубоких результатов в неэвклидовой геометрии.

Ключом к неэвклидовой геометрии являлось «принятие всерьез» постулатов, на которых основаны такие геометрии как геометрия Саккери или Ламберта. Постулаты Саккери кажутся «отвратительными самой природе понятия прямой линии» только в том случае, если вы не можете освободиться от предвзятого мнения о том, что называть «прямой линией». Однако если вы можете отказаться от подобных идей и считать, что «простая линия» — это то, что удовлетворяет новым постулатам, то ваша точка зрения радикально изменится.

Неопределяемые понятия

Эти рассуждения, вероятно, уже начинают звучать знакомо. В частности, они возвращают нас к теме системы pr и ее варианта, где символы приобретали пассивное значение, зависящее от их роли в теоремах. Особенно интересен был символ r, поскольку его «значение» изменилось, когда мы прибавили новую схему аксиом. Совершенно так же значения понятий «точка», «линия» и т. д. могут определяться множеством теорем (или постулатов), в которых они встречаются. Очень важно, что открыватели неэвклидовой геометрии это осознали. Они нашли различные неэвклидовы геометрии, по-разному отрицая пятый постулат Эвклида и изучая последствия этого. Строго говоря, они (как и Саккери) не отрицали пятого постулата прямо; вместо этого они отрицали эквивалентный, так называемый параллельный постулат:

Через точку, лежащую вне прямой, можно провести одну и только одну прямую, не пересекающуюся с первой прямой, сколько бы мы их не продолжали.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное