Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Некоторые из этих миров кажется легче вообразить, чем другие, так как некоторые из них включают логические противоречия — например, зеленый и не зеленый — в то время как другие кажутся, за неимением лучшего слова, возможными, сюда например, относятся Бах, импровизирующий восьмиголосную фугу, или животные, состоящие не из клеток. Или даже такие миры, в которых законы физики отличаются от наших… Пожалуй, можно сказать, что имеются разные типы непротиворечивости. Например, самым широким был бы «логически непротиворечивый» класс, так как для вхождения в него не существует никаких ограничений, кроме логических. Система является логически непротиворечивой, когда никакие из ее двух теорем, будучи интерпретированы как суждения, прямо не противоречат одна другой; математически непротиворечивой, когда интерпретированные теоремы не нарушают законов математики и физически непротиворечивой, когда интерпретированные теоремы совместимы с законами физики. За этим следует биологическая непротиворечивость и так далее. В биологически непротиворечивой системе может существовать теорема, интерпретация которой — суждение «Шекспир написал оперу», но не теорема, интерпретируемая как «Существуют неклеточные животные». Подобные причудливые типы противоречивости никто не изучает, так как их весьма сложно различить. Какая именно противоречивость заключена в задаче о трех героях, изобретающих друг друга по кругу? Логическая? Физическая? Биологическая? Литературная?

Обычно граница между интересным и неинтересным проводится между физической и математической непротиворечивостью. (Разумеется, эту линию проводят сами математики и физики — компания, которую вряд ли можно назвать беспристрастной!…) Это значит, что при рассмотрении формальных систем «учитываются» два типа противоречивости — математическая и логическая. В соответствии с этим критерием мы еще не нашли такой интерпретации, в которой тройка теорем ЧвЗ, ЗвЭ, ЭвЧ была бы противоречива. Для этого мы могли бы интерпретировать в как «больше чем». Как насчет Ч, 3, и Э? Они могут быть интерпретированы, например, как 0, 2 и 11, соответственно. Обратите внимание, что таким образом две теоремы оказываются истинными, и одна — ложной. Если бы мы интерпретировали З как 3, у нас получилось бы две ложных и одна истинная теорема. Однако в обоих случаях система была бы противоречива. На самом деле неважно, какое значение мы придаем Ч, З и Э, если мы не выходим за пределы натуральных чисел. Здесь мы опять сталкиваемся со случаем, когда, для того чтобы обнаружить внутреннюю противоречивость, необходима лишь частичная интерпретация символов системы.

Включение одной формальной системы в другую

Предыдущий пример, в котором были интерпретированы только некоторые из символов, чем-то напоминает занятия геометрией на натуральном языке, когда мы используем некоторые слова как неопределяемые понятия. В таком случае слова делятся на два класса: те, чье значение неизменно и четко определено, и те, чье значение меняется до тех пор, пока система не станет непротиворечивой.(Последние и являются неопределяемыми понятиями). Такой подход к геометрии требует, чтобы слова первого класса уже имели определения, приобретенные вне геометрии. Эти слова формируют скелет системы, ее глубинную структуру, которая может быть затем наполнена различным материалом (эвклидова или неэвклидова геометрия).

Формальные системы часто строятся именно по такому последовательному или иерархическому типу. Например, можно придумать Формальную Систему I, с правилами и аксиомами, дающими некие пассивные значения ее символам. Эта Формальная Система I включается в более широкую систему с большим количеством символов — Формальную систему II. Поскольку правила и аксиомы Формальной Системы I являются частью Формальной Системы II, пассивные значения символов Формальной Системы I остаются в силе и формируют жесткий скелет, играющий важную роль в определении пассивных значений новых символов Формальной Системы II. Вторая система может, в свою очередь, являться скелетом для третьей системы, и так далее. Может также существовать система (например, абсолютная геометрия) которая частично дает пассивные значения своих неопределяемых понятий и которая может быть дополнена правилами и аксиомами, далее ограничивающими эти значения. Именно это и происходит в случае эвклидовой геометрии в сравнении с неэвклидовой.

Уровни стабильности в зрительном восприятии

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное