Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Все это время мы говорили о «непротиворечивости» и «противоречивости», не давая определений этим понятиям. При этом мы опирались на старый добрый здравый смысл. Давайте теперь точно определим, что имеется в виду под непротиворечивостью формальной системы (вместе с ее интерпретацией). Это означает, что каждая теорема, будучи интерпретирована, становится истинным утверждением. С другой стороны, если среди интерпретированных теорем найдется хоть одно ложное утверждение, мы говорим о противоречивости данной системы.

Это определение говорит нам о противоречивости по отношению к внешнему миру — а как насчет внутренних противоречий? По идее, система была бы внутренне противоречива, если бы она содержала по крайней мере две теоремы, чьи интерпретации были бы несовместимы друг с другом, и непротиворечива, если бы все теоремы были совместимы между собой. Рассмотрим, например, формальную систему, имеющую только следующие три теоремы: ЧвЗ, ЗвЭ и ЭвЧ. Если Ч интерпретируется как «Черепаха», З — как «Зенон», Э — как «Эгберт» и x в y — как x всегда выигрывает в шахматы у «, то мы имеем следующие интерпретированные теоремы:

Черепаха всегда выигрывает в шахматы у Зенона.

Зенон всегда выигрывает в шахматы у Эгберта.

Эгберт всегда выигрывает в шахматы у Черепахи.

Эти утверждения нельзя назвать несовместимыми, хотя они и описывают довольно странную компанию шахматистов. Таким образом, в этой интерпретации формальная система, в которой эти три строчки являются теоремами, внутренне непротиворечива, хота на самом деле ни одна из ее теорем не является истинной! Внутренняя непротиворечивость требует от теорем не того, чтобы все они были истинными, а лишь того, чтобы все они были совместимы друг с другом.

А теперь давайте предположим, что x в y интерпретируется как «x был изобретен y». Тогда у нас было бы:

Черепаха была изобретена Зеноном

Зенон был изобретен Эгбертом

Эгберт был изобретен Черепахой

В этом случае неважно, какие из отдельных высказываний истинны — а может быть, вообще нельзя установить, какие из них истинны и какие ложны. Однако мы можем с уверенностью сказать, что все три высказывания не могут быть истинными одновременно. Таким образом, данная интерпретация делает систему внутренне противоречивой. Противоречие здесь зависит не от интерпретации заглавных букв, а от интерпретации в и от того, как заглавные буквы передвигаются по кругу вокруг в. Следовательно, можно говорить о внутренней противоречивости, не интерпретируя всех символов системы. (В данном случае хватило интерпретации одного-единственного символа) Возможно, что интерпретировав достаточное количество символов, мы уже ясно увидим, что никакая дальнейшая интерпретация не сделает все теоремы истинными. Дело здесь, однако, не только в истине, а в возможности. Все три теоремы оказались бы ложными, если бы мы интерпретировали заглавные буквы как имена реальных персонажей, однако мы называем систему внутренне противоречивой по другой причине. Мы основываем наше суждение на интерпретации буквы в в сочетании с кругообразностью (Еще кое-что об этом «авторском треугольнике» вы найдете в главе XX).

Гипотетические миры и непротиворечивость

Мы привели два взгляда на непротиворечивость: первый утверждает, что система вместе с ее интерпретацией непротиворечива по отношению к внешнему миру, когда любая из ее интерпретированных теорем оказывается истинной. Другой говорит нам, что система вместе с ее интерпретацией внутренне непротиворечива, когда все ее теоремы, будучи интерпретированы, совместимы друг с другом. Эти два типа непротиворечивости тесно связаны. Чтобы определить совместимы ли друг с другом несколько высказываний, мы пытаемся представить себе такой мир, в котором все они могут быть истинными одновременно. Таким образом, внутренняя непротиворечивость зависит от непротиворечивости с внешним миром — только теперь «внешний мир» может быть любым воображаемым миром, вместо того, в котором мы живем. Однако это весьма неопределенное и неудовлетворительное заключение. Что составляет такой «воображаемый мир»? В конце концов, возможно вообразить и такой мир, в котором три героя изобретают друг друга по очереди. Или нет? Возможно ли вообразить мир, в котором есть квадратные круги? Или мир, в котором действительны законы Ньютона, а не законы относительности? Возможно ли вообразить такой мир, в котором что-то было бы одновременно зеленым и не зеленым? Или мир, в котором животные не сделаны из клеток? Мир, в котором Бах сымпровизировал восьмиголосную фугу на тему короля Фридриха Великого? В котором комары умнее людей? В котором Черепахи умеют играть в футбол и говорить? Разумеется, Черепаха, говорящая о футболе, была бы аномалией.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное