Наружное коленчатое тело выглядит как состоящее из двух частей. Его подразделяют на вентральные, или нижние, слои и четыре дорсальных, или верхних, слоя (
Волокна, выходящие из шести слоев НКТ, объединяются в один широкий пучок, называемый
Главная тема этой главы — вопрос о том, как клетки в первичной зрительной коре отвечают на зрительные стимулы. Рецептивные поля нейронов НКТ имеют такую же организацию (разделение на центр и периферию), как и рецептивные поля ганглиозных клеток сетчатки, которые посылают свои аксоны к клеткам НКТ. Подобно ганглиозным клеткам сетчатки, нейроны НКТ различаются между собой главным образом свойствами рецептивного поля (on- или off-центр, местоположение в поле зрения) и особенностями ответов на цветовые стимулы. Возникает вопрос: а как обстоит дело с корковыми нейронами? Сходны ли они с клетками НКТ, посылающими в кору свои аксоны, или же у них появляются какие-то новые особенности? Ответ, как читатель уже должен догадаться, такой: корковые клетки действительно обладают новыми качествами, причем настолько необычными, что вплоть до 1958 года, когда их впервые стали изучать с помощью сложных световых стимулов, никто не мог даже приблизительно предсказать эти свойства.
Первичная зрительная кора (стриарная кора) представляет собой слой клеток толщиной 2 мм и площадью в несколько квадратных дюймов.[1]
Для того чтобы дать представление о размерах этой нейронной структуры, можно привести такие цифры: если НКТ содержит полтора миллиона клеток, то стриарная кора — около 200 миллионов клеток. Анатомическая структура стриарной коры удивительно сложна, однако нет необходимости знать ее детали, чтобы понять, каким образом преобразуется здесь поступающая зрительная информация. Более подробно строение этого отдела будет рассмотрено в следующей главе, где будет обсуждаться вопрос о его функциональной архитектуре.Как я уже говорил, процесс переработки информации в коре состоит из нескольких этапов. На первом этапе большинство клеток дает такие же ответы, как клетки НКТ. Рецептивные поля этих клеток обладают круговой симметрией. Это означает, что линия или граница (перепад освещенности) вызывает один и тот же ответ вне зависимости от ее ориентации. Регистрировать электрическую активность корковых клеток этого уровня непросто, так как они очень малы и расположены близко друг к другу. Пока еще не ясно, отличаются ли вообще ответы этих корковых клеток от ответов клеток НКТ (точно так же как не ясно, отличаются ли реакции клеток НКТ от ответов ганглиозных клеток сетчатки). Сложность гистологического строения НКТ и коры позволяет думать, что между ними должны быть какие-то различия и что их можно будет выявить, если знать, в чем их следует искать; однако узнать это может оказаться трудным делом.
Положение еще больше усложняется, когда мы переходим к ответам клеток на следующем корковом уровне. Вероятно, эти клетки должны получать входные сигналы от нейронов предыдущего уровня, обладающих рецептивными полями с центром и периферией. Вначале нам было совсем не просто выяснить, на какие зрительные стимулы отвечают эти клетки второго коркового уровня. В то время (конец 50-х годов) лишь очень немногие исследователи пытались регистрировать ответы одиночных нейронов зрительной коры. Те, кто это делал, получали противоречивые результаты. Они нашли, что клетки в зрительной коре работают, видимо, почти так же, как и в сетчатке, — были найдены как on-, так и off-клетки. Кроме того, был обнаружен еще один класс клеток, которые, казалось, вообще не отвечали на световые стимулы. Простота выявленных физиологических свойств корковых клеток на фоне просто дьявольской сложности морфологии коры ставила исследователей в тупик.
Рис. 40. Окрашенный по Гольджи срез первичной зрительной коры, на котором видно больше дюжины пирамидных клеток (но это лишь очень малая доля нейронов, содержащихся в срезе). Величина изображенного участка по вертикали — около 1 мм. (Темная полоса у правого края — кровеносный сосуд.)