Если развернуть влево нижнюю часть графика силы, то есть, в обратном направлении времени, образуется некоторое подобие параболы, описывающей в физике Ньютона бросок тела вертикально вверх. Как мы отметили, изобразить графически
Рис. 3.4. Диаграмма Минковского на основе графиков рис. 3.3 — пробное тело m падает на звезду M, но в последний момент траектория тела проходит мимо звезды, по другой координате (не показана). Сила Fx является эквивалентом кривизны пространства. Вблизи звезды, на наименьшем удалении от неё кривизна резко возрастает, пик уходит далеко за границы рисунка. Если в точке пика развернуть левую часть графика R(t) вниз, то он приобретёт вид параболы, соответствующей броску тела вверх в физике Ньютона.
На рис. 3.2 и рис. 3.3 мы показали систему с одной пространственной координатой. В этом случае любое тело может двигаться
На рис. 3.4 приведена
На рисунке, диаграмме Минковского вдоль оси времени ct идёт мировая линия тяжёлого тела — некой звезды. На некотором расстоянии R0
от неё зависает спутник под действием собственных двигателей или двигателей транспортного корабля. В этом случае мировая линия спутника (этот участок линии не показан) параллельна прямолинейной мировой линии звезды. Поскольку мы рассматриваем ситуацию в системе отсчёта звезды, в которой она неподвижна, ей мировая линия строго прямолинейна, по определению — это ось координат ct.Теперь корабль отстыковывает спутник, и тот начинает падение в сторону звезды. Видим, что в начальный момент сила притяжения довольно мала, поскольку на этом удалении пространство-время практически плоское, не искривлено массой звезды. По мере приближения спутника, пробного тела m к звезде, его геодезическая Rx, сила и её эквивалент — искривление пространства-времени — растут относительно медленно. И лишь вблизи массивного тела, звезды кривизна и сила тяготения резко возрастают. В этой области мировая линия спутника начинает искривляться по квадратно-гиперболической кривой в сторону звезды. Искривление мировой линии, геодезической является результатом действия закона всемирного тяготения, являющегося квадратичной гиперболой.
Если в некоторый момент времени спутник включит на торможение свои двигатели, то его мировая линия с этого момента вновь выпрямится и будет параллельна мировой линии звезды. Если двигатели не включать, то спутник упадёт на звезду, то есть, их мировые линии пересекутся.
Однако если произойдёт, прямо скажем, чудо, и перед самым падением спутника звезда
Всё это выглядит вполне логично, и даже объясняет, как ненаблюдаемая явно кривизна пространства-времени приводит, по сути, к графически наблюдаемому искривлению геодезических, мировых линий. Однако следует признать, это описание ничего не говорит о причинах, механизме искривления пространства-времени.
На диаграмме искривление пространства-времени, эквивалент силы F и мировая линия спутника, пробного тела m, геодезическая R являются фактически функциями времени — F(t) и R(t). Для построения гравитационной воронки транспонируем F(t) в F(R), в стационарную силу тяготения, в пространственное гравитационное поле
Рис. 3.5. Образующая гравитационной воронки массивного тела M (Чёрной дыры) — зависимость силы притяжения к нему пробного тела m от удалённости F(R). График сверху уходит далеко за пределы рисунка
Этот график является образующей, огибающей гравитационной воронки массивного точечного объекта, по сути, Чёрной дыры. Ранее мы выдвинули предположение о том, что внутри Чёрной дыры на самом деле находится нейтронная звезда конечных размеров, то есть, никакое падающее на неё пробное тело не может достичь центра. Любой объект на границе этой внутренней нейтронной звезды попросту распадается, превращается в тонкий слой нейтронов.