Для демонстрации приведём анимацию [3], на которой показана
На приведённой динамической диаграмме Минковского используется изменяющийся, динамический масштаб, то есть, значения возле меток на осях координат постоянно возрастают вместе с течением времени. В этом случае линия настоящего и начало координат остаются неподвижными. Если использовать традиционный фиксированный масштаб, то в приведённой анимации квадрат 80х80 пространственно-временных координат в начале движения, преобразуется в конце движения в квадрат 1000х1000, то есть исходную диаграмму к этому моменту необходимо увеличить в 12,5 раз. Динамическое масштабирование даёт один и тот же размер диаграммы в обоих случаях, изменяется только цена делений осей.
Другим следствием такого масштабирования является то, что движущиеся во времени события и неподвижная (лабораторная) ИСО с линией "настоящее покоя" окажутся "замороженными" в своих определенных, начальных точках диаграммы. Наоборот, события, имеющие определённое, фиксированное время свершения, на диаграмме будут двигаться по своим мировым линии к началу координат, то есть, как бы в обратном направлении, в прошлое, оставаясь при этом в фиксированной точке пространства-времени. Такая диаграмма будет напоминать картину удаляющегося ландшафта: так выглядят деревья, дома, люди, если смотреть на них через заднее стекло уезжающего автомобиля. Все пропорции сохраняются, уменьшаются только размеры.
Теперь рассмотрим другой, простейший случай — тело m находится в покое на удалении R0
от массивного тела M. Это массивное тело искривляет пространство-время вокруг себе, что приводит в движение неподвижное изначально тело m. Определим закон движения этого тела. Изначально на него действует ньютонова силаПод действием этой силы тело начинает двигаться с мгновенным ускорением
За некоторый короткий момент времени dt тело достигнет скорости d
и переместится на небольшое расстояние
В следующий момент времени сила и ускорение возрастают, поскольку уменьшается расстояние между взаимодействующими телами
Обращаем внимание, что уравнение явно отличается от уравнения движения с неизменным ускорением, от уравнения падения тела в гравитационном поле Земли.
По аналогии, рассматривая равные интервалы времени, находим следующий пройденный интервал
Мы считаем, что к появлению силы притяжения приводит искривление пространства-времени массой тела M. Проявляются эта сила и кривизна в том, что мировая линия, геодезическая тела m также искривляется. Это, собственно, и есть уравнение для визуальной демонстрации кривизны: мы теперь можем построить график, геодезическую на диаграмме Минковского. Для удобства немного изменим уравнения
Следующее уравнение также изменит вид
В общем виде уравнение принимает вид
Очевидно, что
следовательно, в конечной точке сила притяжения, ускорение и кривизна приобретут бесконечно большие значения. Но это в случае точечного объекта M. Мы принимаем, что объект либо имеет конечные размеры — r0
, либо тело m приблизится к нему на конечное расстояние, либо "пролетит" мимо по другой координате.Мы не будем пытаться решить эти уравнения аналитически, поскольку они позволяют довольно просто построить график непосредственно. Для построения графика кривизны, считая его тождественным графику силы, преобразуем уравнения к качественно подобному виду
Строим графики этих уравнений, помня, что они являются функциями времени
Рис. 3.2. Тело падает на массивную звезду. График силы Fx соответствует кривизне пространства-времени. Вблизи звезды кривизна очень велика, в проделанных вычислениях график уходит к значениям Fx ~ 200.
Традиционные для физики Ньютона графики рис. 3.3 показывают ситуацию падения пробного тела на звезду, после чего его мировая, геодезическая прерывается, пробное тело сливается со звездой. Однако возможна и ситуация, что пробное тело "промахивается" мимо звезду и продолжает своё движение далее, удаляясь от неё. Эту картину демонстрируют те же уравнения, что и для первого этапа движения, этапа падения. Нужно просто продлить графики во времени. В результате получаем графики более полные
Рис. 3.3. Пробное тело m падает на звезду M, но в последний момент траектория тела проходит мимо звезды, по другой координате (не показана). Вблизи звезды, на наименьшем удалении от неё сила Fx резко возрастает, пик уходит далеко за границы рисунка. Если развернуть время в точке пика, то график R(t) приобретёт вид параболы, соответствующей броску тела вверх в обозначениях физики Ньютона.