«…Возникает вопрос, который волновал исследователей всех времен. Почему возможно такое превосходное соответствие математики с реальными предметами, если сама она является произведением только человеческой мысли, не связанной ни с каким опытом? Может ли человеческий разум без всякого опыта, путем только размышления понять свойства реальных вещей?»
-11-
Проблема мистической силы, таящейся в математических построениях, привлекала к себе многих выдающихся мыслителей. Сам великий Альберт Эйнштейн неоднократно обращался к вопросу: если аксиомы математики и принципы логики являются абстрактными умозрительными конструкциями, то почему вытекающие из них следствия так хорошо согласуются с реальной практикой?
Эти рассуждения так или иначе сводились к простому вопросу с поистине бездонным философским содержанием: почему математика сверхуниверсальна и вообще действует в нашем Мире?
Сначала считалось, что математики осознанно или, наоборот, неосознанно подбирают свои аксиомы именно таким образом, что выводимые из них следствия согласовываются с опытом. Профессор Клайн, в частности, считает, что первым эту идею высказал еще энциклопедист и просветитель Дени Дидро в своем труде «Мысли об интерпретации природы». Великий мыслитель сравнивал математика с игроком. И тот и другой играют, придерживаясь ими же придуманных абстрактных правил. И тот и другой сосредотачивают свои помыслы на исследовании некоего условного предмета, рожденного принятыми соглашениями и не имеющего основы в реальности. По мнению Клайна, именно таким образом действуют и создатели современных математических моделей. Их алгоритм внешне прост: берется одна из возможных моделей и сверяется с опытом. Если модель оказывается неадекватной, то ее переделывают, внося необходимые изменения. Тем не менее сама по себе возможность вывести из одной модели десятки, если не сотни, различных теорем, хорошо согласующихся с опытом и полностью применимых в окружающей нас физической реальности, сильно озадачивает уже многие поколения ученых. Наверное, где-то здесь лежат идеологические основы современнейших теорий Мультиверса — Вселенной, включающей в себя бесчисленное множество миров, в которых возможно абсолютно все.
Разумеется, существуют и совершенно иные объяснения непостижимой эффективности действия математического
-12-
аппарата. Чаще всего при этом упоминают великого немецкого философа Канта, который утверждал, что мы не знаем и не можем знать природу. Человек, согласно Канту, настолько ограничен чувственными восприятиями, что его разум изначально наделен некими врожденными структурами, диктующими всем нам интуитивные суждения о пространстве и времени. Именно поэтому наш разум требует, чтобы окружающее пространство воспринималось в полном соответствии с законами евклидовой геометрии. Тут следует заметить, что немецкий мыслитель ничего не знал о неевклидовой геометрии, существование которой в реальном мире во многом опровергает его философские суждения. Иначе говоря, все окружающие нас явления мы видим сквозь призму врожденных математических представлений, поскольку