Читаем Язык программирования C#9 и платформа .NET5 полностью

Давайте обновим приложение WPF для рисования RenderingShapes, чтобы использовать в нем более интересные кисти. В трех фигурах, которые были задействованы до сих пор при визуализации данных в панели инструментов, применяются обычные сплошные цвета, так что их значения можно зафиксировать с помощью простых строковых литералов. Чтобы сделать задачу чуть более интересной, теперь вы будете использовать интегрированный редактор кистей. Удостоверьтесь в том, что в IDE-среде открыт редактор XAML для начального окна и выберите элемент Ellipse. В окне Properties отыщите категорию Brush (Кисть) и щелкните на свойстве Fill (рис. 26.5).

В верхней части редактора кистей находится набор свойств, которые являются "совместимыми с кистью" для выбранного элемента (т.е. Fill, Stroke и OpacityMask). Под ними расположен набор вкладок, которые позволяют конфигурировать разные типы кистей, включая текущую кисть со сплошным цветом. Для управления цветом текущей кисти можно применять инструмент выбора цвета, а также ползунки ARGB (alpha, red, green, blue — прозрачность, красный, зеленый, синий). С помощью этих ползунков и связанной с ними области выбора цвета можно создавать сплошной цвет любого вида. Используйте указанные инструменты для изменения цвета в свойстве Fill элемента Ellipse и просмотрите результирующую разметку XAML. Как видите, цвет сохраняется в виде шестнадцатеричного значения:

Что более интересно, тот же самый редактор позволяет конфигурировать и градиентные кисти, которые применяются для определения последовательностей цветов и точек перехода цветов. Вспомните, что редактор кистей предлагает набор вкладок, первая из которых позволяет установить пустую кисть для отсутствующего визуализированного вывода. Остальные четыре дают возможность установить кисть сплошного цвета (как только что было показано), градиентную кисть, мозаичную кисть и кисть с изображением.

Щелкните на вкладке градиентной кисти; редактор отобразит несколько новых настроек (рис. 26.6).

Три кнопки в левом нижнем углу позволяют выбрать линейный градиент, радиальный градиент или обратить градиентные переходы. Полоса внизу покажет текущий цвет каждого градиентного перехода, который будет представлен специальным ползунком. Перетаскивая ползунок по полосе градиента, можно управлять смещением градиента. Кроме того, щелкая на конкретном ползунке, можно изменять цвет определенного градиентного перехода с помощью селектора цвета. Наконец, щелчок прямо на полосе градиента позволяет добавлять градиентные переходы.

Потратьте некоторое время на освоение этого редактора, чтобы построить радиальную градиентную кисть, содержащую три градиентных перехода, и установить их цвета. На рис. 26.6 показан пример кисти, использующей три оттенка зеленого цвета.

В результате IDE-среда обновит разметку XAML, добавив набор специальных кистей и присвоив их совместимым с кистями свойствам (свойство Fill элемента Ellipse в рассматриваемом примере) с применением синтаксиса "свойство-элемент":

 

   

     

     

     

   

  

<p id="AutBody_Root1183"><strong>Конфигурирование кистей в коде</strong></p>

Теперь, когда вы построили специальную кисть для определения XAML элемента Ellipse, соответствующий код C# устарел в том плане, что он по-прежнему будет визуализировать круг со сплошным зеленым цветом. Для восстановления синхронизации модифицируйте нужный оператор case, чтобы использовать только что созданную кисть. Ниже показано необходимое обновление, которое выглядит более сложным, чем можно было ожидать, т.к. шестнадцатеричное значение преобразуется в подходящий объект Color посредством класса System.Windows.Media.ColorConverter (результат изменения представлен на рис. 26.7):

case SelectedShape.Circle:

  shapeToRender = new Ellipse() { Height = 35, Width = 35 };

  // Создать кисть RadialGradientBrush в коде.

  RadialGradientBrush brush = new RadialGradientBrush();

  brush.GradientStops.Add(new GradientStop(

    (Color)ColorConverter.ConvertFromString("#FF77F177"), 0));

  brush.GradientStops.Add(new GradientStop(

    (Color)ColorConverter.ConvertFromString("#FF11E611"), 1));

  brush.GradientStops.Add(new GradientStop(

    (Color)ColorConverter.ConvertFromString("#FF5A8E5A"), 0.545));

  shapeToRender.Fill = brush;

  break;

Кстати, объекты GradientStop можно строить, указывая простой цвет в качестве первого параметра конструктора с применением перечисления Colors, которое дает сконфигурированный объект Color:

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT
Разработка приложений в среде Linux. Второе издание
Разработка приложений в среде Linux. Второе издание

Книга известных профессионалов в области разработки коммерческих приложений в Linux представляет СЃРѕР±РѕР№ отличный справочник для широкого круга программистов в Linux, а также тех разработчиков на языке С, которые перешли в среду Linux из РґСЂСѓРіРёС… операционных систем. РџРѕРґСЂРѕР±но рассматриваются концепции, лежащие в основе процесса создания системных приложений, а также разнообразные доступные инструменты и библиотеки. Среди рассматриваемых в книге вопросов можно выделить анализ особенностей применения лицензий GNU, использование СЃРІРѕР±одно распространяемых компиляторов и библиотек, системное программирование для Linux, а также написание и отладка собственных переносимых библиотек. Р

Майкл К. Джонсон , Эрик В. Троан

Программирование, программы, базы данных