Как же следует реагировать человеку, столкнувшемуся с красотой математики? Ощутить удовольствие – это несомненно; возможно, еще и благоговение. Томас Джефферсон на 66-м году жизни писал, что размышление над математическими истинами помогает ему «коротать утомительные годы заката жизни». Бертран Рассел, который в автобиографии не без мелодраматизма утверждал, что не покончил с собой лишь потому, что хотел дальше изучать математику, писал, что она обладает «красотой холодной и строгой, подобной красоте скульптуры… возвышенно чистой и способной к суровому совершенству». У многих других красота математики вызывает гораздо более теплые чувства. Вероятно, о чем-то таком писал и Платон в «Пире». Там Сократ рассказывает собравшимся у пиршественного стола гостям, как жрица Диотима посвятила его в тайны Эрота – так греки называли желание во всех его разновидностях. Одна из форм Эрота – сексуальное желание, возбуждаемое физической красотой конкретного любимого человека. По словам Диотимы, такая разновидность – низшая. Однако Эрот, отточенный философией, способен распространяться на все более высокие объекты. И предпоследний из них, непосредственно перед платоновской идеей самой Красоты – вечная и совершенная красота, открываемая математическими науками. У того, кто способен оценить ее, возникает желание ее воспроизвести – не биологически, а интеллектуально, «разрешиться от бремени» прекрасными идеями и теориями. С точки зрения Диотимы, как, должно быть, и самого Платона, на красоту математики следует отвечать той формой Эрота, которую мы зовем любовью (бессмысленное, но интересное совпадение: ближе к концу «Апологии математика» Г. Г. Харди рассказывает, что на красоту математики ему открыл глаза кембриджский профессор по фамилии
Вот, к примеру, Эдуард Френкель, русский вундеркинд-математик, который стал гарвардским профессором в 21 год, а сейчас преподает в Беркли, – непоколебимый платоник. Эротом проникнута его очаровательная книга воспоминаний «Любовь и математика» – своего рода платоновское любовное письмо математике. В детстве красота математики поразила Френкеля в самое сердце. А когда, не достигнув и двадцати, он совершил новое математическое открытие, это было «как первый поцелуй». Математика была его страстью и приносила ему радость даже тогда, когда казалось, что он никогда ничего не достигнет в мире науки из-за антисемитизма, царившего в СССР.
Френкель хочет, чтобы эту радость и эту страсть разделили все. Но тут возникает некоторое препятствие. Математика – наука трудная и абстрактная, ее красота большинству из нас, похоже, недоступна. По словам немецкого поэта Ханса Магнуса Энценсбергера, математика – «слепое пятно нашей культуры, чуждая территория, куда смогла проникнуть лишь элита, лишь немногие посвященные». Даже высокообразованные люди не без гордости признают, что ничего не смыслят в математике. Беда в том, что никто не познакомил их с ее шедеврами. Математика, которую преподают в школе и даже в колледже (скажем, введение в математический анализ), в основном стара – ей сотни и даже тысячи лет – и по большей части предполагает решение скучных задач при помощи трудоемких вычислений.
Между тем математики в наши дни в основном занимаются совсем другим. Примерно в середине XIX века в математике произошла своего рода революция: центр внимания сместился с вычислений на научной основе к свободному созданию новых языков и новых структур. Математические доказательства при всей своей строгой логике стали больше похожи на повествования с основным сюжетом, боковыми ответвлениями, поворотами и развязками. Такой математики большинство из нас никогда не видели. Да, она подчас обескураживает. Но великие произведения искусства, даже трудные, зачастую являют свою красоту даже непосвященным. Фуга Баха трогает даже тех, кто не знаком с теорией контрапункта.
Увлечение красотой высшей математики привело к тому, что Френкель и сам сыграл важную роль в самой увлекательной математической драме последних пятидесяти лет – в программе Ленглендса. Эту программу разработал в шестидесятые годы прошлого века канадский математик Роберт Ленглендс, работавший тогда в Институте передовых исследований в Принстоне (и унаследовавший кабинет Эйнштейна). Она претендует на звание теории великого объединения. По словам Френкеля, она содержит «исходный код всей математики». Однако за пределами математического сообщества о ней мало кто знает. Более того, о программе Ленглендса не знало большинство профессиональных математиков даже в девяностые, когда она оказалась задействована в доказательстве последней теоремы Ферма, ставшем сенсацией. А с тех пор она вышла за пределы чистой математики и вторглась в царство теоретической физики.