Рис. 25.
Большинство фирм-производителей применяют поэтому или фокусирующие системы линз, которые освещают область капилляра примерно в 0.5 нм и меньше, или щели, которые имеют ширину от 50 до 200 мкм и длину от 100 до 300 мкм.
Существует много примеров улучшения чувствительности при УФ-опредёлении в КЭ за счет увеличения толщины слоя детектирования Чтобы увеличить толщину слоя и снизить границу обнаружения, были протестированы различные экспериментальные разработки.
Помимо применения капилляров прямоугольной формы, было также изучено применение в КЭ известных из микро-ВЭЖХ Z-ячеек.
Применение прямоугольных капилляров улучшает детектирование примерно в 10 раз. Практическая польза этого улучшения может не реализоваться из-за больших проблем при вводе пробы.
Применение Z-ячейки в КЭ не повышает чувствительность определения, так как помимо сигнала за счет светорассеяния также сильно увеличиваются шумы. Новейшие разработки этих систем показывают, что за счет сферической линзы на стороне источника света непосредственно перед изломом капилляра светорассеяние может быть минимизированно. Благодаря этому можно достигнуть улучшения чувствительности примерно в 11 раз для Z-ячейки с длиной светового пути 3 мм. При выбранной длине пути 3 мм отсутствия влияния или очень малое влияние на эффективность следует ожидать только для "широких" пиков. Из ВЭЖХ известно, что объем пика должен быть в 5 раз больше, чем объем ячейки детектора. Это означало бы для ячейки длиной 3 мм в КЭ, что пик должен иметь в капилляре ширину 1.5 см. Однако, поскольку в капиллярном электрофорезе происходит детектирование в режиме реального времени, и благодаря малому объему ячейки детектора и отсутствию соединительных элементов размывания зон не происходит, это правило, конечно, не вполне применимо.
Удлинение участка детектирования, как в случае описанной Z-ячейки со световым путем 3 мм, имеет определенное влияние на эффективность и, как следствие, на разделение зон пробы, особенно, если в течение короткого времени анализа достигается высокая эффективность. При эффективности анализа 500 тыс. теоретических тарелок и времени миграции 5 минут от начала колонки до ячейки детектора ширина пика составляет 1.0 мм.
Это отчетливо указывает на несоответствие между объемами детектирования и пика в Z-ячейках, Такие проблемы менее существенны в капиллярах с ячейкой детектирования, имеющей форму пузырька, так как объем пика при прохождении ячейки детектирования остается приблизительно постоянным, и длина пика в капилляре будет сокращаться. Поэтому с увеличением внутреннего диаметра длина пика автоматически сокращается. Это относится не только к прохождению зон веществ через ячейку детектора, но также и к электрофоретическому перемещению веществ, так как они перемещаются вдоль линий поля через весь объем ячейки детектирования.
Рис. 26 показывает структуру и расположение стандартных блоков детекторов с одной длиной волны, сканирующих детекторов, а также ДМД.
Рис. 26.
А
— детектор одной длины волны с ртутной лампой (1), фильтр (5); В — многоволновой детектор с дейтериевой и вольфрамовыми лампами (2), поворачиваемое зеркало (3) и решеточный монохроматор (6); С — быстросканирующий детектор с вращающимся решеточным монохроматором; D — ДМД (8).Наиболее часто используемым является УФ-детектор с постоянной или изменяемой длиной волны. Для этого в качестве источника света должен использоваться непрерывный излучатель. Даже если энергия света из-за этого значительно снижена, возможна работа в области длин волн от 190 до 320 нм.