— Это уж пустяки. Положительные игреки расположены вверх по оси иксов, стало быть, отрицательные…
— Вниз! — сообразил Фило и принялся откладывать отрицательные координаты точек: -1, -2, -2, -1, -3, -2/3, и, наконец -1/2, -4. — Теперь, — сказал он, любуясь своей работой, — объединим все это хозяйство общей линией, и вторая ветвь гиперболы налицо. Ура, ура и в третий раз ура! Остается выяснить главное: для чего все это делалось?
— Для того чтобы понять, каким образом Менехм решал задачу об удвоении куба, — пояснил Мате. — А решал он ее так: изображал обе кривые на одном чертеже и рассматривал при этом только ту часть координатной плоскости, на которой эти кривые пересекаются. Точка пересечения их — обозначим ее буквой А — удовлетворяет и первому и второму уравнениям, а следовательно, и уравнению
— Кажется, он насчитал их четырнадцать, — вспомнил Фило.
— Собственно говоря, в наше время все эти виды сводятся к одному. Да и способ решения изменился. Теперь кубические уравнения решаются по формуле итальянского математика XVI века Карда́но.
Фило разочарованно нахохлился. Как же так? Выходит, Хайям трудился впустую. Но Мате сказал, что в науке ничего не бывает впустую. Конечно, трудам Хайяма не суждено было повлиять на европейскую математику — эта честь досталась ал-Хорезми. Зато они повлияли на математиков Востока. Идеи Хайяма были подхвачены и развиты другими, более поздними учеными. Кроме того, не следует забывать, что в некоторых вопросах Хайям произвел настоящую революцию. Достаточно вспомнить его календарную реформу. Или учение о числе… Между прочим, Хайям первый признал иррациональные числа и, таким образом, открыто выступил против Аристотеля, который во всем остальном оставался для него непререкаемым авторитетом.
— Чудно́! Неужели было время, когда иррациональных чисел не признавали? — удивился Фило.
— Было время, когда не признавали и отрицательных, — сказал Мате. — Вот хоть два минус пять. Мы это рассматриваем как сложение положительного и отрицательного чисел: 2 + (-5) = -3. С точки зрения древних, такое вычитание невозможно. Уравнение
Фило зажмурился. Подумать только, сколько отчаянного труда, смелости и немыслимого таланта стоит за любым, самым, казалось бы, незначительным научным понятием! Это похоже на бесконечную лестницу, где каждая ступенька штурмуется, как горный пик. Чтобы признать безобидное иррациональное число, Хайям должен был проявить мужество богоборца: ведь он посмел оспаривать самого Аристотеля! А Эратосфен, дерзнувший ввести движение в геометрию, вероятно, чувствовал себя чуть ли не преступником…
— Кстати, об Эратосфене, — круто свернул в сторону Фило. — Мне кажется, ему непременно следовало бы изменить имя. Судите сами: Эрато в Древней Греции — муза любовных песен. Разве это подходит математику? Вот если бы Эратосфен писал стихи…
— К счастью, он их не писал, — отрезал Мате.
— Вы уверены? После истории с двумя Хайямами я бы на вашем месте не слишком полагался на свою память.
Мате покраснел. Проклятая забывчивость! Он снова направился в прихожую и вернулся с объемистой книгой.
— Вот, — сказал он, — здесь собраны биографии ученых Древнего Вавилона, Египта, Греции. Сейчас открою главу об Эратосфене и выясню, чего я там не заметил.
— Позвольте мне!
Фило взял книгу, мгновенно нашел нужную страницу и торжествующе рассмеялся.
— Так и есть!