Читаем Искатели необычайных автографов полностью

— Ладно, ладно, — примирительно проворчал Мате, — все уже подсчитано. Икс у Леонардо приближенно равен 1,368808107853.

Фило был потрясен. Вычислить иррациональный корень с таким невероятным приближением, да еще в шестидесятеричной системе!

— Есть у Фибоначчи вещи и более удивительные, — сказал Мате.

— Что вы имеете в виду?

Но Мате решил, как видно, поддразнить приятеля и пропустил вопрос мимо ушей.

— Налить вам еще кофе? — спросил он самым светским тоном.

— Конечно, налить. Но вы не ответили на…

— Берите, пожалуйста, сахар.

— Нет, это, наконец, невежливо! — вспылил донельзя заинтригованный гость. — Клянусь решетом Эратосфена, вы узнали что-то в высшей степени интересное. Неужели я не заслужил…

— Успокойтесь, заслужили! Но сперва скажите: знаете вы что-нибудь о теореме Ферма́? Нет? Тогда придется вас просветить, иначе вы ничего не поймете.

И Мате стал рассказывать.

— Краса и гордость французской математики Пьер Ферма жил в XVII веке (кстати сказать, в те же примерно годы, что и Блез Паскаль). Математика, как ни странно, не была его основным занятием: он был юристом королевского парламента в Тулузе, что, впрочем, не помешало ему оставить громадное математическое наследство, где немалое место занимает так называемая великая теорема Ферма. Теореме этой суждено было стать такой же мучительной загадкой для человечества, как и пятый постулат Эвклида, с той разницей, что пятому постулату повезло больше: вопрос этот успешно разрешен. Что же до теоремы Ферма, то ни доказать ее, ни опровергнуть возможность ее доказательства пока что не удалось. Но об этом после. А сейчас о самой теореме. В чем она заключается? В математике всегда можно подобрать три таких целых числа, чтобы сумма квадратов двух из них равнялась квадрату третьего. Например, З2 + 42 = 52. Или 52 + 122 = 132. Таких числовых троек бесконечно много. Но нельзя, оказывается, подобрать три целых числа, чтобы сумма кубов двух из них равнялась кубу третьего. Нельзя это сделать ни для четвертой, ни для пятой — словом, вообще ни для какой степени, если она больше двух. Иначе говоря, xn + yn ≠ zn, если n > 2.

Ферма записал эту теорему на полях «Арифметики» Диофа́нта[28] и уверял, что доказал ее. Но найти его доказательство так и не смогли. Остается предположить, что если оно вправду было, то Ферма сам уничтожил его, обнаружив ошибку… С тех пор над теоремой бьются многие математики, великие и невеликие, молодые и старые, профессиональные и самодеятельные. Некоторым удалось доказать ее для частных случаев, однако общее доказательство по-прежнему неуловимо. Иногда, правда, интерес к теореме ослабевает, но довольно малой искры, чтобы заставить его вспыхнуть с новой силой. Порой это превращается в какой-то свирепый психоз…

— Не психоз, а ферманьячество, — скаламбурил Фило. — Но я, право, не понимаю, при чем тут Фибоначчи?

— До вчерашнего дня я сам этого не знал… Зато сегодня!..

Но тут зарычал Буль, и Мате прервал свой рассказ на самом интересном месте.

— Кажется, к нам заявились незваные гости, — сказал он. — Буль всегда их загодя чувствует.

И правда, в ту же секунду раздался звонок. Пес ринулся к двери, Мате последовал за ним, и любопытный филолог остался один на один со своим взбудораженным воображением.


Фило гадает


«Интересно, кто это пришел?» — думал он, ожидая, что вот-вот появится Мате в сопровождении посетителя. Но никто не приходил.

Прислушиваясь к голосам в коридоре, Фило рассматривал большую, давно не ремонтированную комнату, забитую книгами и ветхой разнородной мебелью. Внезапно он подумал, что Мате никогда о себе не рассказывал, и постарался представить себе его жизнь. Ему почему-то казалось, что друг его рано осиротел и воспитывался у какой-нибудь тетки, обязательно старой девы, доброй, но страшно безалаберной и мечтательной, а сверх того — страстной любительницы чтения. Все свободное время она проводила за книгой, лежа на той вон облезлой кушетке, а иногда, по вечерам, когда маленький Мате готовил уроки, раскладывала пасьянс, дымя папиросой и роняя серые столбики пепла на старинные, замусоленные карты.

Время от времени в комнату въезжал очередной полуразвалившийся шкаф или просиженное кресло: это соседи купили новую мебель и попросили приютить прежнюю — ненадолго, пока не продастся… Тетка беспечно на это соглашалась, но старые вещи почти никогда не продавались, и скоро она переставала их замечать.

Готовить она так и не научилась, и Мате всегда ел пережаренные котлеты и недоваренную картошку. Единственное, что она умела, это варить кофе, что и передала своему племяннику вместе с полнейшим пренебрежением к житейским удобствам и немаловажной способностью безоглядно предаваться любимому занятию…

Кончив фантазировать, Фило нетерпеливо поглядел на дверь, потом снова перевел глаза на кушетку и вдруг обнаружил, что вместо воображаемой тетки на ней лежит отнюдь не воображаемая книга. По привычке старого книголюба он перелистал ее, сразу определил, что книга библиотечная, и тут в глаза ему бросилось знакомое имя…

Перейти на страницу:

Все книги серии Филоматики

Искатели необычайных автографов, или Странствия, приключения и беседы двух филоматиков
Искатели необычайных автографов, или Странствия, приключения и беседы двух филоматиков

Любитель изящной словесности Филарет Филаретович Филаретов, или сокращенно Фило, и признающий только красоту математики Матвей Матвеевич Матвеев, или сокращенно Мате, отправляются в путешествие по прошедшим эпохам в поисках автографов великих писателей и математиков. Каково же их удивление, когда оказывается, что они разыскивают одних и тех же людей! На страницах этой удивительной книги вы повстречаетесь с Омаром Хайямом, Блезом Паскалем, Эратосфеном, Фибоначчи, Пифагором и многими другими великими людьми, которые, возможно, предстанут в новом, незнакомом для вас качестве. Немаловажно, что книга написана простым понятным языком и не требует специальных знаний в области математики.

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Математика

Похожие книги