Одним из его замечательных изобретений был систематический метод составления списка простых чисел. Эратосфен предложил следующий алгоритм нахождения простых чисел в списке всех чисел от 1 до 100: возьмем число 2 и вычеркнем все следующие числа, делящиеся на 2. Для этого нужно просто перемещаться по таблице с шагом в две единицы, вычеркивая все числа, на которые попадаешь. Затем перейдем к следующему невычеркнутому числу. Это, разумеется, число 3. Теперь вычеркнем все числа, делящиеся на 3, проходя по таблице с шагом в три единицы и систематически вычеркивая все числа, на которые мы попадаем. Тут-то алгоритм и начинает работать в полную силу. Следующее число, еще не вычеркнутое из списка, – это 5. Повторим ту же операцию, которую мы производили с предыдущими числами: пройдем по таблице с шагом в пять единиц, вычеркивая все попадающиеся числа.
В этом и состоит принцип действия алгоритма: нужно каждый раз переходить к следующему еще остающемуся в списке числу и вычеркивать все числа, делящиеся на него, проходя по таблице с шагом, соответствующим этому числу. Если применять этот метод систематически, то после вычеркивания чисел, делящихся на 7, остается таблица простых чисел, меньших 100.
Это чрезвычайно удобный алгоритм. Он открывает шорткат, избавляющий от лишних размышлений. Он идеально подходит для реализации в компьютерной программе. Беда в том, что он очень быстро превращается в медленный метод поиска простых чисел. Этот шорткат избавляет от размышлений, потому что использующий его составляет список, действуя как машина. Но в этой книге я хочу воспеть не такие шорткаты. Мне нужна рациональная стратегия поиска простых чисел.
Однако Эратосфену я бы поставил высшую оценку за вычисление окружности Земли, потому что оно было поистине гениальным. Он слыхал, что в городе Сиене есть колодец, над которым один день в году Солнце бывает точно в зените. В полдень дня летнего солнцестояния Солнце светит прямо в этот колодец, не отбрасывая теней на его стенки. Сегодня город Сиене называется Асуан, а находится он неподалеку от тропика Рака – параллели, расположенной на широте 23,4 градуса, которая отмечает самые северные точки, в которых Солнце может быть прямо над головой.
Эратосфен понял, что может использовать эту информацию о положении Солнца и поставить именно в такой день опыт, позволяющий вычислить длину окружности Земли. Хотя ему не пришлось оборачивать всю планету мерной лентой, ходить при проведении опыта пришлось немало. В день летнего солнцестояния он установил в Александрии, находившейся, как он считал, строго на север от Сиене, столб. На самом деле долготы этих городов различаются на 2 градуса, но меня восхищает не точность результата, а сама идея опыта.
В тот день, когда в Сиене Солнце стояло прямо над головой и в тамошнем колодце не было тени, столб, установленный в Александрии, тень отбрасывал. Измерив длину тени и высоту столба, Эратосфен мог построить треугольник с таким же соотношением длин сторон и измерить его угол. Величина этого угла показывала, какая часть окружности Земли отделяет Александрию от Сиене. Измеренный им угол оказался равен 7,2 градуса, то есть 1/50 части полной окружности. Оставалось лишь узнать физическое расстояние между Александрией и Сиене.
Сам Эратосфен не пошел его измерять: он воспользовался услугами профессионального землемера, так называемого бематиста, который должен пройти от одного города до другого по прямой линии. Любое отклонение внесло бы искажения в расчеты. Результат был выражен в более крупных единицах – стадиях. Оказалось, что Александрия находится в 5000 стадиев к северу от Сиене. Если это расстояние составляло 1/50 полного пути вокруг света, значит, длина окружности Земли была равна 250 000 стадиев. Сегодня мы не знаем в точности, сколько шагов землемера, нанятого Эратосфеном, приходилось на один стадий, но, как я уже говорил, это измерение было поразительно качественным. С помощью простых геометрических построений Эратосфен создал шорткат, избавивший его от необходимости отправлять кого-нибудь в пешее путешествие вокруг всей планеты.
С этим опытом тесно связано и само слово «геометрия», потому что по-гречески оно означает «измерение Земли». Оно образовано от слов γῆ (ге) – земля и μέτρον (метрон) – измерение.
Тригонометрия – шорткат к небесам
Древние греки применяли свою математику не только для измерения Земли. Они поняли, что ее можно использовать и для измерения небес. И важнейшим инструментом в этом деле были не телескопы или хитроумные рулетки, а математические средства тригонометрии.
Следы применения этих средств можно найти уже в вычислениях Эратосфена. Тригонометрия – это наука о треугольниках, объясняющая связи между углами треугольников и длинами их сторон. Этот раздел математики открыл перед математиками Античности необычайный шорткат, позволявший измерять космос, не покидая уютной поверхности Земли.