С тех самых пор, когда первые древние цивилизации начали строить города, нам понадобились единицы измерения, помогающие вести строительство согласованно. Первые варианты таких единиц появились еще у древних египтян, которые ориентировались на части тела. Локтем называлось расстояние от локтя до кончика среднего пальца. Такая же привязка к частям тела ясно видна в единицах измерения, бытовавших до введения метрической системы. Фут, разумеется, соответствовал длине ступни[53]
. Дюйм во многих европейских языках называется тем же словом, что и большой палец[54]. Ярд тесно связан с длиной человеческого шага. Интересно отметить, что единицу под названием «род», которую использовали для измерения земли в саксонские времена, определяли следующим образом: это суммарная длина левых ступней первых 16 человек, вышедших из церкви воскресным утром. Однако размеры и формы тела людей настолько разнятся, что и результаты таких измерений должны получаться чрезвычайно непостоянными.Король Генрих I попытался решить эту проблему, распорядившись сделать эталоном для стандартизации этих единиц измерения королевское тело. Он постановил, что ярдом следует считать расстояние от кончика носа короля до кончика большого пальца его вытянутой руки. Но и у этого решения, разумеется, были свои недостатки, так как длина ярда могла изменяться каждый раз, когда на престол вступал новый монарх.
Вожди Французской революции полагали, что следует ввести эгалитарную систему измерений, доступную всем. Галилей доказал, что период колебаний маятника зависит от его длины, а не от веса или размаха колебаний. Сначала предложили считать метром длину маятника, колеблющегося с периодом две секунды. Однако выяснилось, что период колебаний зависит еще и от силы тяжести, которая бывает разной в разных точках мира.
Тогда решили определить метр как одну десятимиллионную часть расстояния от полюса до экватора. Хотя в принципе измерить это расстояние мог кто угодно, вскоре стало ясно, что на практике такое определение неудобно. Измерить расстояние от полюса до экватора и привезти в Париж точный метр поручили двум ученым, Пьеру Мешену и Жану-Батисту Деламбру. Но, как понял еще Эратосфен, для этого было вовсе не обязательно измерять все расстояние. Двое ученых решили измерить расстояние между Дюнкерком и Барселоной – городами, находящимися приблизительно на одной и той же долготе. Затем они собирались вывести из результатов этих измерений расстояние от полюса до экватора – так же, как сделал Эратосфен.
Деламбр начал свой путь с севера, из Дюнкерка, а Мешен, которому был поручен южный участок, – из Барселоны. Они договорились встретиться посередине, в южнофранцузском городе Родезе[55]
. Но как они вычисляли расстояния? Прежде всего им нужна была стандартная мера длины, которую оба использовали бы в своих измерениях. Но даже при наличии такой меры они не могли перекладывать такую линейку на всем пути от Дюнкерка до Барселоны.Тут-то и пригодились возможности тригонометрии и треугольников. Деламбр поднялся на колокольню одной из церквей Дюнкерка и нашел на некотором расстоянии две другие возвышенные точки, которые могли служить двумя другими вершинами треугольника. Ему пришлось измерить расстояние от колокольни до одной из этих точек. Этой тяжелой работы было не избежать. Но после этого, используя измеренные величины двух углов треугольника, он мог вычислить длины двух других его сторон. Для измерения углов ему послужил прибор, который назывался повторительным кругом Борда. Он состоял из двух телескопов, установленных на общей оси, и шкалы для измерения угла между ними. Деламбр направил телескопы на две возвышенные точки, которые он видел с вершины колокольни, и просто записал величину угла между телескопами.
Переместившись в другую вершину треугольника, он измерил второй угол. Затем в игру вступила тригонометрия, позволившая ему найти длины двух недостающих сторон. Но по-настоящему хитроумный шаг был сделан после этого. Одна из этих сторон, длину которой Деламбр теперь знал, стала стороной нового треугольника, который он построил, выбрав следующую возвышенную точку, видную из двух точек, которые он выбрал с колокольни церкви в Дюнкерке. Длину одной из сторон этого нового треугольника он уже знал. Следовательно, чтобы вычислить еще неизвестные длины сторон нового треугольника, ему нужно было только измерить два угла при помощи повторительного круга Борда.
Рис. 4.3. Тригонометрия позволяет вычислить расстояние от
Это был великолепный шорткат. Ученым, последовательно строившим треугольники на всем пути от Дюнкерка до Барселоны, нужно было измерить лишь одну-единственную сторону одного-единственного треугольника: после этого оставалось измерять только углы при вершинах. Триангуляция открывает поразительный шорткат к геодезическим съемкам. Можно измерять углы, удобно устроившись на возвышенностях, образующих вершины треугольников. Не нужно измерять расстояние шагами или мерными рейками.