Например, идея хештега не была внедрена в Twitter волевым решением. В компании заметили, что пользователи применяют этот значок для классификации своих сообщений. По-видимому, создателем хештега был пользователь Крис Мессина, первым предложивший его в августе 2007 года. Ему хотелось, чтобы был шорткат, позволяющий находить других пользователей, которых интересуют те темы, о которых он пишет. Хештег оказался удобным способом «подслушивать» интересные обмены сообщениями. Когда оказалось, что вслед за Мессиной по этой тропе ходит все больше и больше людей, компания Twitter по достоинству оценила этот шорткат, проложенный пользователями, и в 2009 году он стал официальным элементом Twitter – так сказать, заасфальтированной дорожкой.
Геодезические
Если вы развернете карту мира, чтобы начертить на ней кратчайший, по вашему мнению, маршрут перелета между Мадагаскаром и Лас-Вегасом, вашим первым побуждением, возможно, будет провести прямую линию, соединяющую эти две точки на карте. Именно такой, казалось бы, должна быть народная тропа, вдоль которой летают самолеты (или птицы). Но этот маршрут не учитывает кривизны Земли. Настоящая народная тропа, самый короткий маршрут, проложенный по поверхности сферы, проходит над Великобританией и Гренландией, вдалеке от исходной прямой, проведенной на плоской карте.
Рис. 4.4. Самый быстрый маршрут от Мадагаскара до Лас-Вегаса проходит через Великобританию
Кратчайший путь между двумя точками на поверхности сферы – так называемая геодезическая (или геодезическая линия) – проходит вдоль так называемого большого круга. Большой круг подобен меридиану, проходящему через два полюса. Собственно говоря, если взять меридиан и сдвинуть его так, чтобы он проходил через две точки, которые вы пытаетесь соединить, это и будет проходящий через них большой круг.
Если начать изучать следствия из особенностей таких шорткатов по поверхности глобуса, обнаруживаются некоторые весьма любопытные обстоятельства. Возьмем, например, три точки – Северный полюс, город Кито в Эквадоре и город Найроби в Кении. Последние два города расположены довольно близко к экватору. Кратчайшие пути между этими тремя точками образуют на поверхности Земли треугольник. В классической евклидовой геометрии сумма углов треугольника равна 180 градусам. Но если рассмотреть сумму углов этого треугольника, окажется, что она гораздо больше 180 градусов. Действительно, каждый из углов с вершинами в Кито и Найроби составляет почти 90 градусов, потому что меридианы, идущие от полюса, пересекают экватор под углом 90 градусов. Угол с вершиной на Северном полюсе образован меридианами, проходящими через эти города, и составляет 115 градусов. Следовательно, сумма углов получившегося треугольника равна 90 + 90 + 115 = 295 градусов.
Существуют и геометрии, в которых суммы углов треугольников меньше 180 градусов. Например, на поверхности геометрического тела, которое называют псевдосферой, похожем на конус с искривленными боками, кратчайшие пути между точками тоже образуют необычные треугольники, суммы углов которых меньше 180 градусов. Это тело обладает так называемой отрицательной кривизной, а сферы, подобные земному шару, – кривизной положительной. В плоской геометрии, действующей, в частности, на карте, с которой я начал этот разговор, кривизна равна нулю.
Рис. 4.5. Сумма углов треугольника на поверхности сферы оказывается больше 180 градусов
Рис. 4.6. Сумма углов треугольника на поверхности псевдосферы оказывается меньше 180 градусов
Открытие искривленных геометрий было одним из самых интересных достижений математики начала XIX века. Однако это открытие породило своего рода склоку между тремя математиками, каждый из которых утверждал, что первооткрывателем этих геометрий был именно он. Впервые идею таких новых геометрий одновременно обнародовали в 1830-х годах русский математик Николай Иванович Лобачевский и венгр Янош Бойяи. Открытие Бойяи произвело сильное впечатление на его отца[59]
, который не замедлил похвастаться этим достижением своему близкому другу, Карлу Фридриху Гауссу. Однако ответ Гаусса на письмо Бойяи-отца был довольно язвительным: