Изгибание и искривление пространства также может создавать шорткаты через Вселенную, позволяющие обойти некоторые из препятствий, существование которых предполагает теория относительности Эйнштейна. Он выяснил, что во Вселенной существует предельная скорость – скорость света в вакууме. Ничто не может двигаться быстрее. Это создает трудности для желающих переместиться с одного края галактики на другой. Такое путешествие займет много времени. Это крупная проблема, с которой сталкиваются многие писатели-фантасты: как доставить персонажей из одного места в другое, не тратя на путешествие долгие годы? Решением часто бывает использование кротовой норы, специального решения уравнений поля теории Эйнштейна, которое предполагает теоретическую возможность существования шорткатов между разными областями пространственно-временной геометрии. Кротовая нора несколько похожа на туннель, пробитый сквозь гору, но соединяет две точки в разных концах Вселенной, обычное путешествие между которыми заняло бы миллионы лет.
Рис. 4.7. Из точки А в точку B можно попасть длинным путем через всю Вселенную или коротким путем через кротовую нору
Таким образом, идея Гаусса о том, что свет, распространяющийся между вершинами холмов в Геттингене, использует искривленные короткие пути, была правильной. Дело было лишь в том, что увидеть этот эффект позволяют наблюдения на гораздо большем масштабе, не Ганновера, а нашей Галактики. К чести Эйнштейна, он всегда признавал, что именно математики XIX века создали геометрию, позволившую ему разработать теорию относительности: «Значение К. Ф. Гаусса для развития современной физической теории и в особенности для создания математического основания теории относительности огромно», – писал он. И еще: «Более того… я без колебаний признаю, что до некоторой степени сходное наслаждение можно получить, погрузившись в рассмотрение вопросов геометрии».
Шорткат к шорткатам
Если вы собираетесь поехать из пункта А в пункт Б, часто имеет смысл помнить, как находит самый быстрый маршрут свет: иногда бывает выгодно двигаться в обход, потому что эта дорога оказывается более быстрой, хоть и более длинной. Иногда бывает непросто измерить что-либо в доме, потому что не везде удается развернуть рулетку. Но, наверное, можно измерить углы? Синусы и косинусы всегда были предназначены открывать поразительно удобные шорткаты к измерению не только ночного неба или поверхности Земли, но всего того, что на первый взгляд может показаться недоступным. Стратегию градостроителей – предоставлять жителям самим находить шорткаты – можно использовать не только для переходов из одного конца парка в другой. Когда вы следуете за общественностью к оптимальному решению какой-либо задачи, это может стать шорткатом, который избавит вас от необходимости выполнять всю соответствующую работу самостоятельно.
Пит-стоп: Путешествия
Я очень люблю гулять. Неспешная ходьба позволяет воспринимать пейзажи и природу так, как это редко удается делать в нашей суматошной жизни. Цель прогулки – не перемещение из пункта А в пункт Б. Зачастую речь идет о перемещении из пункта А в пункт А с получением удовольствия от длинного кружного пути, заканчивающегося там же, где он начинался. Когда мой сын был маленьким, это занятие казалось ему бессмысленным. Однажды мы вышли в однодневный пеший поход по сельской местности. Через пару километров сын внезапно заметил тропу, отходившую от нашего пути и пересекавшую поле. В ее конце он увидел наш дом. «Пап, я нашел шорткат! Смотри, нам надо пойти по этой тропинке, и она приведет прямо к дому!»
Но для меня пешие прогулки – это еще и своего рода шорткат. Мне кажется, что три мили в час[60]
– идеальная скорость для размышлений. Жан-Жак Руссо писал в «Исповеди»: «Ходьба таит в себе нечто такое, что оживляет и заостряет мои мысли; я почти совсем не могу думать, сидя на месте; нужно, чтобы тело мое находилось в движении, чтобы пришел в движение и ум»[61]. Прогулки – мой шорткат к математическим озарениям, необходимая кружная дорога, по которой мне нужно пройти, чтобы позволить моему подсознанию изучить задачу с новой стороны.Роберт Макфарлейн говорит о связи между ходьбой и мышлением в книге «Старые пути» (The Old Ways: A Journey on Foot, 2012). Он описывает, как Людвиг Витгенштейн, гуляя по сельской местности в Норвегии, сделал важный шаг в своей работе. «Мне кажется, что я родил внутри себя новые мысли», – пишет философ. Но наиболее показательно, как отмечает Макфарлейн, то слово, которым Витгенштейн называет эти мысли. Витгенштейн использует слово
Макфарлейн любит путешествия, прогулки на природе, походы, поездки. Его книги – великолепная хвалебная речь пешим путешествиям. Поэтому мне очень хотелось поговорить с ним о том, как он относится к идее шорткатов. Не упускаем ли мы чего-нибудь из виду, если всегда стремимся найти шорткат?