Хотя к открытию того факта, что к азартным играм можно применять математические методы, привела переписка между Ферма и Паскалем, математическая теория вероятностей по-настоящему кристаллизовалась лишь с появлением работы швейцарского математика Якоба Бернулли «Искусство предположений» (Ars Conjectandi)[111]
. Якоб принадлежал к тому самому клану Бернулли, который выступал на стороне Лейбница в споре об авторстве математического анализа. Именно в этой работе можно найти формулу целесообразной платы за участие в любой игре.Предположим, существует
Эта формула казалась правильной, пока родственник Якоба Николай Бернулли[112]
не совершил нечто почти наводящее на мысль об эдиповом комплексе: он придумал следующую игру. Я подбрасываю монету. Если выпадает орел, я плачу вам 2 доллара и игра заканчивается. Если выпадает решка, я подбрасываю монету еще раз. Если на этот раз выпадает орел, я плачу вам 4 доллара. Если решка, я подбрасываю монету еще раз. Каждый раз, когда я подбрасываю монету, выигрыш удваивается. Например, если 6 раз выпадает решка, а потом орел, я должен заплатить вам 2 × 2 × 2 × 2 × 2 × 2 × 2 = 27 = = 128 долларов. Сколько вы согласились бы платить за участие в игре Николая? Четыре доллара? Двадцать? Сто?Существует 50-процентный шанс, что вы выиграете всего 2 доллара. В конце концов, вероятность того, что при первом же броске выпадет орел, равна 1/2. Значит,
Если вы останавливаете игру после 7 бросков, вы проигрываете только в случае выпадения семи решек подряд. По формуле Якоба средний выигрыш получается равным
Но вот в чем загвоздка. Николай готов играть бесконечно, пока не выпадет орел. Вы выигрываете в каждой партии. Сколько же вы можете заплатить за участие в игре? Теперь вариантов бесконечно много. Из формулы следует, что средний выигрыш будет составлять 1 + 1 + 1 + … – бесконечно много долларов! Если вам предлагают играть по таким правилам, выгодно согласиться, сколько бы это ни стоило. Если плата за участие – 2 доллара, вы будете проигрывать с вероятностью 50 процентов, каждый раз, когда с первого же броска будет выпадать орел. Но математика утверждает, что если вы будете продолжать игру, то в долгосрочной перспективе вы должны оказаться в выигрыше.
Почему же большинство не согласится играть в такую игру, если входная плата будет больше долларов десяти или около того? Речь идет о санкт-петербургском парадоксе, названном так в честь Даниила Бернулли, двоюродного брата Николая[113]
, который предложил первое объяснение причин, по которым ни один рационально мыслящий человек не согласится играть в такую игру за любую плату. В то время Даниил работал в Академии наук в Санкт-Петербурге. Его ответ сводится к тому, что скажет вам любой миллиардер: первый заработанный миллион гораздо ценнее второго. В формулу нужно подставлять не сумму выигрыша, а его ценность для вас лично. Поэтому цена, которую вы готовы заплатить за участие в игре, меняется в зависимости от того, насколько вы цените ее исход. Решение Даниила имело значение, выходящее далеко за рамки любопытной математической игры: по сути дела, оно стало основой всей современной экономики.Чтобы еще раз показать, что этот шорткат к миллиардному состоянию на самом деле не так хорош, как кажется, рассмотрим следующий вопрос: если вам удается играть по одной партии в секунду, сколько времени займут 260
партий? Именно на такое количество партий в санкт-петербургскую игру следует рассчитывать, чтобы остаться при своих, если плата за участие равна 60 долларам. Ответ – более 36 миллиардов лет. Возраст нашей Вселенной – не более 14 миллиардов лет. Этот результат дает еще один ответ на вопрос о том, почему большинство не согласится платить произвольную сумму за участие в этой игре.