Читаем Искусство схемотехники. Том 1 (Изд.4-е) полностью

Транзистор T1 - внешний проходной транзистор; он должен быть снабжен радиатором — чаще всего это ребристая металлическая пластина — для отвода тепла (можно и по-другому: поместить транзистор на одной из стенок металлического корпуса блока питания). С вопросами теплового режима мы будем иметь дело в следующем разделе. Подстроенный потенциометр применен для точного выставления +5 В на выходе; диапазон подстройки должен быть достаточным для компенсации допуска на сопротивления резисторов, а также призводственного разброса Uoп (рассматривается наихудший случай). В данном случае диапазон настройки выходного напряжения находится в пределах ±1 В от номинала. Заметьте, что для получения тока нагрузки 2 А или около этого необходим мощный токоограничивающий резистор с низким сопротивлением.

Падение напряжения на проходном транзисторе. Одна из проблем при построении этой схемы — большое рассеяние мощности на проходном транзисторе (по крайней мере 10 Вт при полном токе нагрузки). Этого не избежать, если ИМС стабилизатора питается от нестабилизированного источника, поскольку в этом случае ему нужен «запас сверху» в несколько вольт (определяемый минимальным падением напряжения). Если использовать для ИМС 723 отдельный слаботочный источник питания (например, +12 В), то минимум нестабилизированного напряжения питания на внешнем проходном транзисторе может всего лишь на 1 В превышать стабилизированное напряжение на выходе, но лучше все же иметь запас хоть несколько вольт, так как в жестких условиях эксплуатации требуется нормальная работа даже при 20 %-ном снижении напряжения в сети переменного тока.

Защита нагрузки по напряжению. В схеме рис. 6.5 предусмотрена также защита нагрузки от слишком больших напряжений, состоящая из Д1, Т2 и резистора 33 Ом. Назначение этой схемы — закорачивать выход, если из-за какой-либо неисправности стабилизатора выходное напряжение последнего выше 6,2 В (это может случиться, если отключится один из выводов резисторов делителя или откажет какой-нибудь элемент схемы 723). Т2 - это КУВ (кремниевый управляемый выпрямитель, тиристор) — прибор, ток в котором нормально отсутствует до тех пор, пока переход управляющий электрод-катод не получит прямое смещение. После этого прибор включается (входит в насыщение), и, однажды включившись, не выключится, пока анодный ток не будет прерван извне. В нашем случае через управляющий электрод пройдет ток, если выходное напряжение окажется больше напряжения стабилитрона Д1 плюс перепад на p-n-переходе. Когда это произойдет, в стабилизаторе включится схема ограничения тока и КУВ будет удерживать выходное напряжение около уровня земли. Если неисправность, приведшая к ненормальному повышению выходного напряжения, к тому же вывела из строя токоограничивающую схему (например, у транзистора T1 замкнулся коллектор на эмиттер), то схема защиты будет отбирать очень большой ток. Поэтому где-нибудь в цепи питания надо поставить плавкий предохранитель, как показано на схеме. Подробнее схемы защиты от превышения напряжений рассмотрены в разд. 6.06.

Проектирование теплоотвода мощных схем



6.04. Мощные транзисторы и отвод тепла

Часто необходимо, как мы видели в приведенных выше схемах, использовать мощные транзисторы или другие сильноточные устройства, такие, как КУВ или силовые выпрямители, рассеивающие мощности во много ватт. Недорогой и очень распространенный мощный транзистор 2Ν3055, правильно смонтированный, рассеивает мощность до 115 Вт. Все мощные устройства выпускаются в корпусах, обеспечивающих тепловой контакт между их металлической поверхностью и внешним радиатором. Во многих случаях металлическая поверхность устройства связана электрически с одним из выводов (например, у мощного транзистора она всегда связана с коллектором).

В принципе задача теплоотвода — удержать переходы транзисторов или других устройств при температуре, не превышающей указанной для них максимальной рабочей температуры. Для кремниевых транзисторов в металлических корпусах максимальная температура переходов обычно равна 200 °C, а для транзисторов в пластмассовых корпусах равна 150 °C. В табл. 6.1 приведены некоторые часто применяемые типы мощных транзисторов и указаны их температурные параметры. Зная эти параметры, проектировать теплоотвод просто: зная мощность, которую прибор будет рассеивать в данной схеме, подсчитываем температуру переходов с учетом теплопроводности транзистора, радиатора и максимальной рабочей температуры окружающей транзистор среды. Затем выбираем такой радиатор, чтобы температура переходов была намного ниже указанной изготовителем максимальной. Здесь разумно перестраховаться, так как при температурах, близких к максимальной, транзистор быстро выходит из строя.

Перейти на страницу:

Похожие книги