4. Иногда удобно монтировать мощный транзистор прямо на шасси или корпус прибора. В этом случае лучше использовать консервативный метод проектирования (корпус должен оставаться холодным), так как нагретый корпус нагреет и другие элементы схемы и сократит их сроки службы.
5. Если транзистор смонтирован на радиаторе без изоляции, то надо изолировать радиатор от шасси. Применение изолирующих прокладок рекомендуется всегда (например, модель Wakefield 103), если, конечно, корпус транзистора не заземлен по идее. Если транзистор изолирован от радиатора, то радиатор можно закрепить прямо на шасси. Но если транзистор выступает наружу из прибора (скажем, радиатор его смонтирован на внешней стороне задней стенки), то имеет смысл изолировать этот транзистор, чтобы никто до него случайно не дотронулся и не замкнул на землю (изолировать можно, например, прокладкой Thermalloy 8903N).
6. Тепловое сопротивление радиатор — внешняя среда обычно указывается, когда ребра радиатора установлены вертикально и обдуваются воздухом без помех. Если же радиатор установлен как-нибудь по-другому или есть препятствия на пути потока воздуха, то эффективность радиатора снижается (повышается тепловое сопротивление); лучше всего монтировать радиатор на задней стенке прибора, ставя ребро вертикально.
Упражнение 6.2.
Транзистор 2N5320, имеющий тепловое сопротивление переход-корпус 17,5 °C/Вт, снабжен съемным радиатором типа IERC TXBF (см. рис. 6.6). Максимальная допустимая температура перехода 200 °C. Какая мощность может рассеиваться такой конструкцией при внешней температуре 25 °C? Как эта мощность уменьшается с каждым градусом увеличения температуры окружающей среды?Для стабилизатора с простым ограничением тока рассеяние мощности на транзисторе будет максимальным, если выход закорочен на землю (случайно или из-за нарушения нормального функционирования схемы), и эта мощность рассеяния обычно превосходит мощность при номинальной нагрузке. Например, проходной транзистор в рассмотренном нами стабилизаторе, дающем +5 В при токе 2 А, будет при закороченном выходе рассеивать мощность 30 Вт (на входе +15 В, ток 2 А), а при номинальной нагрузке — 20 Вт в худшем случае (перепад напряжений 10 В при токе 2 А). Еще хуже обстоит дело для схем, в которых напряжение, падающее на проходном транзисторе, представляет собой небольшую часть выходного напряжения. Например, в стабилизаторе, дающем +15 В при 2 А от нестабилизированного питания +25 В, рассеиваемая мощность изменяется от 20 Вт (на полной нагрузке) до 50 Вт (при коротком замыкании).
С аналогичной проблемой мы сталкиваемся при работе с пушпульными усилителями мощности. При нормальных условиях мы имеем максимальный ток нагрузки при минимальном напряжении на транзисторе (амплитуда выходного сигнала около максимальной), и, наоборот, при значении тока нагрузки, близком к нулю (нулевое напряжение на выходе), напряжение на транзисторе будет максимальным. В случае короткого замыкания мы имеем максимальный ток нагрузки в самый неподходящий момент, а именно при напряжении на транзисторе, равном полному напряжению питания. В результате мощность рассеяния на транзисторе намного превышает нормальную.
Лобовое решение этой проблемы — применение массивных радиаторов и транзисторов с большой расчетной мощностью, работающих в далекой от опасной области характеристик (см.
Рис. 6.7.