Гидоксид железа имеет значительные основные свойства, что обусловливает положительный заряд его поверхности вплоть до нейтральной области рН. Особенно заметно сказывается влияние рН среды на знак и величину заряда поверхности амфотерных оксидов.
Необходимо отметить, что противоионы двойного электрического слоя могут обмениваться на другие ионы того же знака, т. е. способны к ионному обмену, что особенно ярко проявляется у ионообменных материалов.
В дисперсных системах ДЭС возникает на поверхности частиц. Частицу дисперсной фазы в гетерогенно-дисперсной системе вместе с ДЭС называют мицеллой. Строение мицеллы можно рассмотреть на основе представлений о строении ДЭС:
Основу составляет агрегат, который состоит из труднорастворимого соединения SiO2
, и является электронейтральным. При рН2 на поверхности агрегата находятся прочно адсорбированные ОН-, которые образуют слой потенциалопределяющих ионов и составляют внутреннюю оболочку двойного электрического слоя (ДЭС). Агрегат со слоем потенциалобразующих ионов представляет собой ядро коллоида. Ядро имеет заряд потенциалобразующих ионов. Компенсируют заряд ядра – противоионы, которые составляют адсорбционную (плотную) часть и диффузную часть слоя противоионов ДЭС. Ядро с противоионами, находящимися в адсорбционной части, образует гранулу или частицу. Гранула с противоионами, находящимися в диффузной части, образует мицеллу. Мицелла, как и агрегат, электронейтральна.Следует отметить, что в зависимости от состава и свойств среды может изменяться не только слой противоионов, но и слой потенциалобразующих ионов.
Мицеллы создают в дисперсной системе соответствующую противоионам ионную среду – суспензионный эффект. Если противоионами являются Н+
или ОН- ионы, то среда приобретает соответственно кислый или щелочной характер.Суспензионный эффект количественно можно определить как разность между концентрациями противоионов в суспензии и фильтрате. При определении кислотно-основных свойств дисперсной фазы суспензионный эффект рассчитывается по соотношению:
рНСЭ
= рНС – рНФ, т. е. по разности рН суспензии и фильтрата. Суспензионный эффект возрастает с увеличением концентрации дисперсной фазы, а при постоянной массовой концентрации дисперсной фазы – с увеличением ее дисперсности (возрастает межфазная поверхность и, соответственно, концентрация противоионов). Суспензионный эффект уменьшается с повышением концентрации электролитов в системе, что связано с сжатием двойного электрического слоя.Устойчивость дисперсных систем
Под устойчивостью дисперсных систем понимают постоянство их свойств во времени: по дисперсности, по распределению по объему частиц дисперсной фазы и по межчастичному взаимодействию. В данном случае имеется в виду устойчивость по отношению к укрупнению или агрегации частиц дисперсной фазы и их осаждению. Все эти процессы характерны для свободно дисперсных систем.
Таким образом, устойчивость дисперсных систем подразделяют на:
• седиментационную устойчивость – устойчивость к осаждению дисперсной фазы, т. е. способность системы сохранять равномерное распределение частиц дисперсной фазы по объему дисперсионной среды или устойчивость системы к разделению фаз;
• агрегативную устойчивость – устойчивость к агрегации ее частиц.
Агрегативно неустойчивые системы – системы, в которых протекают процессы самопроизвольного укрупнения частиц, т. е. происходит снижение поверхностной энергии засчет уменьшения удельной поверхности.
Укрупнение частиц может идти двумя путями:
1. перенос вещества от мелких частиц к крупным. В результате мелкие частицы постепенно растворяются, а крупные растут;
2. процесс коагуляции, заключающийся в слипании, слиянии частиц. Это наиболее характерный и общий процесс для дисперсных систем.
В общем случае под коагуляцией понимают потерю агрегативной устойчивости дисперсной системы. В разбавленных системах коагуляция приводит к потере седиментационной устойчивости и в конечном итоге к расслоению (разделению) фаз. К процессу коагуляции относят адгезионное взаимодействие дисперсной фазы с макроповерхностями.
В концентрационных системах коагуляция может проявляться в образовании объемной структуры, в которой равномерно распределена дисперсионная среда, т. е. происходит переход из свободно дисперсной системы в связно дисперсную.
Рис. 1.13. Процессы, протекающие в дисперсных системах [8].