Читаем Избранные главы курса Радиохимия полностью

Гидоксид железа имеет значительные основные свойства, что обусловливает положительный заряд его поверхности вплоть до нейтральной области рН. Особенно заметно сказывается влияние рН среды на знак и величину заряда поверхности амфотерных оксидов.

Необходимо отметить, что противоионы двойного электрического слоя могут обмениваться на другие ионы того же знака, т. е. способны к ионному обмену, что особенно ярко проявляется у ионообменных материалов.

В дисперсных системах ДЭС возникает на поверхности частиц. Частицу дисперсной фазы в гетерогенно-дисперсной системе вместе с ДЭС называют мицеллой. Строение мицеллы можно рассмотреть на основе представлений о строении ДЭС:

Основу составляет агрегат, который состоит из труднорастворимого соединения SiO2, и является электронейтральным. При рН2 на поверхности агрегата находятся прочно адсорбированные ОН-, которые образуют слой потенциалопределяющих ионов и составляют внутреннюю оболочку двойного электрического слоя (ДЭС). Агрегат со слоем потенциалобразующих ионов представляет собой ядро коллоида. Ядро имеет заряд потенциалобразующих ионов. Компенсируют заряд ядра – противоионы, которые составляют адсорбционную (плотную) часть и диффузную часть слоя противоионов ДЭС. Ядро с противоионами, находящимися в адсорбционной части, образует гранулу или частицу. Гранула с противоионами, находящимися в диффузной части, образует мицеллу. Мицелла, как и агрегат, электронейтральна.

Следует отметить, что в зависимости от состава и свойств среды может изменяться не только слой противоионов, но и слой потенциалобразующих ионов.

Мицеллы создают в дисперсной системе соответствующую противоионам ионную среду – суспензионный эффект. Если противоионами являются Н+ или ОН- ионы, то среда приобретает соответственно кислый или щелочной характер.

Суспензионный эффект количественно можно определить как разность между концентрациями противоионов в суспензии и фильтрате. При определении кислотно-основных свойств дисперсной фазы суспензионный эффект рассчитывается по соотношению:

рНСЭ = рНС – рНФ, т. е. по разности рН суспензии и фильтрата. Суспензионный эффект возрастает с увеличением концентрации дисперсной фазы, а при постоянной массовой концентрации дисперсной фазы – с увеличением ее дисперсности (возрастает межфазная поверхность и, соответственно, концентрация противоионов). Суспензионный эффект уменьшается с повышением концентрации электролитов в системе, что связано с сжатием двойного электрического слоя.

Устойчивость дисперсных систем

Под устойчивостью дисперсных систем понимают постоянство их свойств во времени: по дисперсности, по распределению по объему частиц дисперсной фазы и по межчастичному взаимодействию. В данном случае имеется в виду устойчивость по отношению к укрупнению или агрегации частиц дисперсной фазы и их осаждению. Все эти процессы характерны для свободно дисперсных систем.

Таким образом, устойчивость дисперсных систем подразделяют на:

• седиментационную устойчивость – устойчивость к осаждению дисперсной фазы, т. е. способность системы сохранять равномерное распределение частиц дисперсной фазы по объему дисперсионной среды или устойчивость системы к разделению фаз;

• агрегативную устойчивость – устойчивость к агрегации ее частиц.

Агрегативно неустойчивые системы – системы, в которых протекают процессы самопроизвольного укрупнения частиц, т. е. происходит снижение поверхностной энергии засчет уменьшения удельной поверхности.

Укрупнение частиц может идти двумя путями:

1. перенос вещества от мелких частиц к крупным. В результате мелкие частицы постепенно растворяются, а крупные растут;

2. процесс коагуляции, заключающийся в слипании, слиянии частиц. Это наиболее характерный и общий процесс для дисперсных систем.

В общем случае под коагуляцией понимают потерю агрегативной устойчивости дисперсной системы. В разбавленных системах коагуляция приводит к потере седиментационной устойчивости и в конечном итоге к расслоению (разделению) фаз. К процессу коагуляции относят адгезионное взаимодействие дисперсной фазы с макроповерхностями.

В концентрационных системах коагуляция может проявляться в образовании объемной структуры, в которой равномерно распределена дисперсионная среда, т. е. происходит переход из свободно дисперсной системы в связно дисперсную.


Рис. 1.13. Процессы, протекающие в дисперсных системах [8].


Перейти на страницу:

Похожие книги