Читаем Избранные главы курса Радиохимия полностью

Основные процессы, происходящие в дисперсных системах, приведены на рис. 1.13. Устойчивая свободно дисперсная система, в которой дисперсная фаза равномерно распределена по всему объему, может образоваться в результате конденсации из истинного раствора. Потеря агрегативной устойчивости приводит к коагуляции, первый этап которой состоит в сближении частиц дисперсной фазы и взаимной их фиксации на небольших расстояниях друг от друга. Между частицами остаются прослойки среды. В результате образуются или флокулы (флокуляция – образование агрегатов из нескольких частиц, разделенных прослойками среды), или коагуляционные структуры, отличающиеся подвижностью частиц относительно друг друга под действием относительно небольших нагрузок. Происходит образование геля – структурированной дисперсной системы, представляющей из себя сплошную пространственную сетку, заполненную жидкостью. Обратный процесс – пептизация.

В целом, под коагуляционными структурами понимают структуры, которые образуются при коагуляции. Взаимодействие частиц дисперсной фазы в них осуществляется через прослойки дисперсионной среды, является, как правило, молекулярным, и каркас такой структуры не отличается высокой прочностью. Механические свойства коагуляционных структур определяются не столько свойствами частиц, образующих определенную структуру, сколько характером и особенностями межчастичных связей и прослоек среды. Для них характерна способность восстанавливать структуру во времени после ее механического разрушения.

Более глубокий процесс коагуляции приводит к разрушению прослоек среды и непосредственному контакту частиц. В итоге образуются жесткие агрегаты из твердых частиц или происходит полное слияние их в системах с жидкой или газообразной дисперсной фазой. В конденсированных системах образуются жесткие объемные конденсационные структуры твердых тел, путем непосредственного химического взаимодействия между частицами и их срастания с образованием жесткой объемной структуры (металлы, сплавы, керамика, бетон и др.). В концентрированных системах образуются жесткие объемные конденсационные структуры твердых тел, которые снова можно превратить в свободнодисперсную систему только путем принудительного диспергирования.

Таким образом, понятие коагуляции включает в себя несколько процессов, идущих с уменьшением удельной поверхности системы.

Термодинамические и кинетические факторы устойчивости дисперсных систем

Агрегативная устойчивость нестабилизированных лиофобных дисперсных систем носит кинетический характер, и судить о ней можно по скорости процессов, вызываемых избытком поверхностной энергии. Однако, агрегативная устойчивость может носить и термодинамический характер. Лиофильные системы термодинамически агрегативно устойчивы, они образуются самопроизвольно, и для них процесс коагуляции вообще не характерен. Рассмотрим более подробно термодинамические и кинетические факторы устойчивости дисперсных систем.

1. Термодинамические факторы. Вследствие того, что движущей силой коагуляции является избыточная поверхностная энергия, то основными факторами, обеспечивающими устойчивость дисперсных систем (при сохранении размера поверхности) будут те, которые снижают поверхностное натяжение. Они уменьшают вероятность эффективных соударений между частицами, создают потенциальные барьеры, замедляющие или исключающие процесс коагуляции.

1.1. Электростатический фактор заключается в уменьшении межфазного натяжения вследствие возникновения двойного электрического слоя на поверхности частиц. Появление электрического потенциала на межфазной поверхности обусловливается поверхностной электролитической диссоциацией или адсорбцией электролитов.

1.2. Адсорбционно-сольватный фактор состоит в уменьшении межфазного натяжения при взаимодействии частиц дисперсной фазы со средой (благодаря адсорбции и сольватации).

При действии адсорбционно-сольватного фактора устойчивости в отсутствии ДЭС поверхностное натяжение уменьшается в результате сольватации поверхностных частиц.

Перейти на страницу:

Похожие книги