Предположим теперь, что с помощью соответствующим образом подобранных внешних сил, направленных параллельно оси кольца, мы медленно тянем в сторону внутреннее кольцо. При этом внешнее кольцо будет отталкиваться от внутреннего и двигаться в противоположную сторону. При смещениях кольца момент импульса электронов относительно оси системы остаётся постоянным, а диаметр внутреннего кольца увеличивается, тогда как внешнего — уменьшается. В начале смещения величина внешней силы, приложенной первоначально к внутреннему кольцу, возрастает, а затем убывает, и при некотором расстоянии между плоскостями колец система приходит к равновесной конфигурации. Но это равновесие не будет устойчивым. Если кольцо будет медленно возвращаться, то оно либо достигнет первоначального положения, либо остановится в таком месте, где кольцо, которое первоначально было внешним, становится внутренним, и наоборот.
Если бы заряд электронов был равномерно распределен по всему кольцу, то указанным процессом мы в крайнем случае могли бы добиться взаимозамены колец, но не их объединения. Принимая во внимание дискретное распределение электронов, можно показать, что в особом случае, когда число электронов в обоих кольцах одинаково и оба кольца вращаются в одну сторону, при указанном процессе кольца объединяются, если, конечно, предположить, что окончательное их расположение устойчиво. В этом случае радиусы и частоты колец в указанном неустойчивом расположении равны. Когда электроны достигнут этой конфигурации, то впредь в одном кольце они будут находиться как раз напротив промежутков между электронами другого кольца, поскольку такое расположение соответствует наименьшей общей энергии. Если теперь предоставить возможность кольцам возвратиться в первоначальную плоскость, то электроны одного кольца перейдут в свободные промежутки второго, образуя единое кольцо. Очевидно, образованное таким образом кольцо будет удовлетворять тому же условию для момента импульса электронов, как и первоначальные кольца.
Если кольца имеют разное число электронов, то при указанном процессе система будет себя вести совершенно иначе. В противоположность первому случаю мы не можем ожидать, что кольца объединятся, если внешними силами, действующими параллельно оси системы, они будут медленно смещены из своей первоначальной плоскости. В этой связи мы хотели бы заметить, что характерным для рассматриваемых смещений является не особое предположение о внешних силах, а только неизменяемость момента импульса электронов относительно центра кольца. Смещения этого рода в излагаемой теории занимают такое же место, какое виртуальные перемещения — в обычной механике.
Приведённые выше рассуждения как будто указывают на то, что существует большее стремление к объединению обоих колец, если они содержат равное число электронов. Рассматривая последовательное связывание электронов положительным ядром, мы приходим к выводу, что, за исключением случаев ядер с очень большим зарядом, электронные кольца будут объединяться только имея равное число электронов, а, следовательно, число электронов во внутренних кольцах может быть только 2, 4, 8, ... При очень больших зарядах ядра кольца из связанных вначале электронов, если их мало, будут очень тесно расположены, и следует ожидать, что такое расположение очень неустойчиво и постепенный обмен электронами между кольцами будет сильно облегчён.
Это допущение относительно числа электронов в кольцах в значительной мере подтверждается тем обстоятельством, что период изменения химических свойств элементов с низкими атомными весами равен 8. Дальше из этого следует, что число электронов во внешнем кольце будет чётным или нечётным в зависимости от того, будет ли чётным или нечётным общее число электронов в атоме. Это указывает на связь с тем фактом, что валентность элемента с низким атомным весом также чётна или нечётна в зависимости от того, четен или нечётен порядковый номер элемента в периодической системе.