Другая прямая линия, выходящая из точки, соответствующей доходности безрискового актива, представляет комбинации безрискового актива и определенного рискового портфеля из эффективного множества модели Марковица. Эта линия является касательной к данному эффективному множеству (в точке, обозначенной Т
). Хотя и другие рискованные эффективные портфели из модели Марковица могут быть скомбинированы с безрисковым активом, портфель, находящийся в точке T заслуживает особого внимания. Почему? Потому что не существует портфеля, состоящего из рисковых ценных бумаг, который будучи соединен прямой линией с точной, соответствующей безрисковому активу, лежал бы левее и выше его. Другими словами, из всех линий, которые могут быть проведены из точки, соответствующей доходности безрискового актива, и соединяют эту точку с рискованным активом и рискованным портфелем, ни одна не имеет больший наклон, чем линия, идущая в точку Т. Это означает, что данная линия является эффективной границей, и портфели, находящиеся на этой линии имеют максимально возможную доходность и минимально возможный риск. Также стоит обратить внимание, что часть эффективного множества Марковица отсекается этой линией. В частности портфели, которые принадлежали эффективному множеству в модели Марковица и располагались между минимально рискованным портфелем, обозначенным через V, и портфелем T, с введением возможности инвестирования в безрисковые активы не являются эффективными. Теперь эффективное множество состоит из прямого и искривленного отрезка. Прямой отрезок идет из точки T и поэтому представляет портфели, составленные из различных комбинаций безрискового актива и портфеля Т. Искривленный отрезок расположенный выше и правее точки T представляет портфели из эффективного множества модели Марковица.На Рисунке показано, как будет вести себя инвестор при выборе эффективного портфеля, когда кроме рискованных активов имеется безрисковый актив. Если кривые безразличия инвестора выглядят аналогично показанным на Рисунке 2.1, то оптимальный портфель (O*
) будет состоять из вложений части начального капитала в безрисковый актив и остальной части – в портфель T, так как кривые безразличия касаются эффективного множества между безрисковым активом и портфелем T.Аналогично, если инвестор менее склонен избегать риска и его портфель характеризуется кривыми безразличия, сходными с изображениями на рисунке 2.2, то оптимальный портфель (O*
) вообще не будет включать безрисковых активов, так как кривые безразличия касаются искривленной части эффективного множества в точках, лежащих выше и правее точки Т.В предыдущих статьях были рассмотрены Модель Марковца и Модель Тобина, которые предполагают, что для решения задачи портфельного инвестирования необходимо оценить два наиболее значимых параметра ценной бумаги – её ожидаемую доходность и неопределенность (риск). После чего нужно оценить все коэффициенты ковариации (найти статистическую связь) между ценными бумагами. Используя такие оценки, инвестор может построить кривую эффективного множества Марковца, и затем для заданной безрисковой процентной ставки определить касательный портфель, найдя эффективное множество по Тобину. Наконец, инвестор может произвести инвестицию в этот касательный портфель. Как оценить эти показатели с наименьшими трудозатратами? Наиболее простой способ состоит в применении так называемой рыночной модели, которая является частным случаем факторных (или индексных) моделях (
ri
= αiI + βiI * ri + εiI, где
ri
– доходность ценной бумагиrI
– доходность на рыночный индексαiI
– коэффициент смещения;βiI
– коэффициент наклона;εiI
– случайная погрешность. Предположив, что коэффициент наклона положителен, из приведенного уравнения можно заметить следующее: чем выше доходность на рыночный индекс, тем выше будет доходность ценной бумаги (заметим, что среднее значение случайной погрешности равняется нулю).Наклон в рыночной модели ценной бумаги измеряет чувствительность её доходности к доходности на рыночный индекс. Коэффициент наклона рыночной модели принято называть «бета»-коэффициентом, он вычисляется следующим образом:
βiI
= σiI/σi2, где
σiI
– ковариация между доходностью акции