Читаем Как оценить риски в кибербезопасности. Лучшие инструменты и практики полностью

2. Определить конкретный период времени, в течение которого может возникнуть несущее риск событие (например: «Утечка данных из приложения Х произойдет в ближайшие 12 месяцев», «Потеря доступа к системе Х достаточно продолжительная, чтобы привести к снижению производительности в ближайшие пять лет» и т. д.).

3. Для каждого риска субъективно определить вероятность (от 0 до 100 %), с которой заявленное событие произойдет в указанное время (например: «Существует вероятность 10 %, что утечка данных из системы X произойдет в ближайшие 12 месяцев»).

4. Для каждого риска субъективно определить диапазон финансовых потерь в случае наступления события в виде 90 %-ного доверительного интервала (ДИ). Это достаточно широкий диапазон, позволяющий быть на 90 % уверенными, что фактические потери окажутся в его пределах (например: «Если произойдет утечка данных из приложения X, то с вероятностью 90 % можно предположить, что потери составят от 1 до 10 млн долл.»).

5. Если есть возможность, то получить оценки нескольких экспертов, но не проводить при этом общее совещание в попытке достичь консенсуса. Просто предоставьте список определенных событий, и пусть люди отвечают по отдельности. Если ответы некоторых экспертов сильно отличаются от остальных, выясните, не интерпретируют ли они иначе проблему. Например, если один человек называет вероятность наступления какого-либо события равной 5 % в течение года, а другой говорит, что оно с вероятностью 100 % происходит каждый день, тогда они, судя по всему, по-разному поняли вопрос (авторы лично сталкивались именно с таким вариантом). Однако, если эксперты понимают вопрос одинаково, просто усредните их ответы. То есть вычислите среднее арифметическое значение всех вероятностей наступления события, чтобы получить одно значение вероятности, а затем вычислите среднее арифметическое всех наименьших значений вероятностей для получения одного нижнего предела и наибольших значений для получения одного верхнего предела.

Идея субъективной оценки вероятностей может встретить возражения. Некоторые аналитики, без проблем говорящие, что вероятность составляет 4 по шкале от 1 до 5 или является средней по вербальной шкале, будут утверждать, что существуют требования к количественным вероятностям, делающие количественную оценку невыполнимой. Почему-то проблемы, которые не смущали их при использовании более неоднозначных методов, становятся основными препятствиями при попытке сформулировать значимую вероятность.

Это распространенное заблуждение. Как уже отмечалось в главе 2, использование субъективной вероятности для обозначения исходного состояния неопределенности эксперта является математически обоснованным. На самом деле некоторые проблемы в статистике можно решить только с помощью вероятностно выраженного исходного состояния неопределенности. И как раз такие задачи оказываются наиболее значимыми для принятия решений в любой области, включая кибербезопасность. Позже будут приведены источники, поддерживающие этот подход, в том числе несколько очень крупных эмпирических исследований, демонстрирующих его обоснованность. Более того, здесь есть глава, посвященная тому, как помочь читателям измерить и усовершенствовать собственные навыки оценки вероятностей с помощью короткой серии упражнений, позволяющих со временем повысить эффективность этих навыков. Оценки вероятности, получаемые после такого улучшения навыков, мы называем откалиброванными, и, как будет показано далее, существует достаточно много исследований, подтверждающих обоснованность подобных практик.

Пока же просто уясните, что большинство экспертов можно научить субъективно оценивать вероятности и что этот навык объективно измерим (как бы иронично это ни звучало). Помните: если основное беспокойство по поводу использования вероятностных методов возникает из-за отсутствия данных, то, значит, вам не хватает имеющихся данных и для применения неколичественных методов. Как уже говорилось, оба метода на начальном этапе используют один и тот же источник данных – экспертное мнение специалистов по кибербезопасности. И нельзя утверждать, что при использовании количественных показателей вероятности без надлежащего обучения будут допущены ошибки, которых удалось бы избежать, применяя качественные методы.

Достоверность мнения эксперта можно повысить за счет методов, учитывающих два других источника ошибок в суждениях: высокую степень несогласованности экспертов и склонность к распространенным ошибкам в умозаключениях, когда дело касается вероятностного мышления. Все это также будет рассмотрено в следующих главах (и, разумеется, влияние данных источников ошибок никак не учитывается в обычной матрице рисков).

<p>Вычисляя неопределенность</p>
Перейти на страницу:

Похожие книги

Один хороший трейд. Скрытая информация о высококонкурентном мире частного трейдинга
Один хороший трейд. Скрытая информация о высококонкурентном мире частного трейдинга

Частный трейдинг или proprietory trading пока еще мало освещен в русскоязычной литературе. По сути дела, это первая книга на эту тему. Считается, что такой трейдинг появился много лет назад, когда брокерские компании, банки и другие финансовые институты нанимали трейдеров для торговли на финансовых рынках деньгами компании. Сейчас это понятие распространяется и на трейдеров, которые не получают заработную плату, но вкладывают некую сумму своих личных денег в трейды компании-собственника.Книга рассказывает обо всех важных уроках, преподанных автору рынком на протяжении последних 12 лет, в течение которых он тем или иным образом был связан с частным трейдингом. Он поделится с читателем наработанным опытом и для этого познакомит вас со многими трейдерами. Некоторым из них довелось познать вкус успеха, большинству же пришлось очень туго.Книга нацелена на широкую аудиторию трейдеров и спекулянтов, работающих на финансовых рынках России и мира, а также частных инвесторов, самостоятельно продумывающиХ свои стратегии в биржевых и внебиржевых трейдах.

Майк Беллафиоре

Финансы / Хобби и ремесла / Дом и досуг / Финансы и бизнес / Ценные бумаги
Инвестиции в инфраструктуру: Деньги, проекты, интересы. ГЧП, концессии, проектное финансирование
Инвестиции в инфраструктуру: Деньги, проекты, интересы. ГЧП, концессии, проектное финансирование

Без инвестиций в инфраструктуру невозможно представить себе функционирование общества, экономики, бизнеса, государства и его граждан. В книге описываются основные модели внебюджетного инвестирования в транспортные, социальные, медицинские, IT– и иные проекты. Такие проекты – удел больших денег, многоходовых инвестиционных моделей и значительных интересов, а в основе почти всех подобных проектов прямые инвестиции со стороны бюджетов разных уровней либо различные формы государственно-частного партнерства (ГЧП). Материал в книге изложен понятным языком, с многочисленными примерами, помогающими усвоению важнейшей информации, даны предметные советы по старту и реализации конкретных проектов. Именно они могут принести бизнесу существенный доход, а властям – авторитет и уважение граждан.

Альберт Еганян

Финансы / Финансы и бизнес / Ценные бумаги
Покер лжецов
Покер лжецов

«Покер лжецов» — документальный вариант истории об инвестиционных банках, раскрывающий подоплеку повести Тома Вулфа «Bonfire of the Vanities» («Костер тщеславия»). Льюис описывает головокружительный путь своего героя по торговым площадкам фирмы Salomon Brothers в Лондоне и Нью-Йорке в середине бурных 1980-х годов, когда фирма являлась самым мощным и прибыльным инвестиционным банком мира. История этого пути — от простого стажера к подмастерью-геку и к победному званию «большой хобот» — оказалась забавной и пугающей. Это откровенный, безжалостный и захватывающий дух рассказ об истерической алчности и честолюбии в замкнутом, маниакально одержимом мире рынка облигаций. Эксцессы Уолл-стрит, бывшие центральной темой 80-х годов XX века, нашли точное отражение в «Покере лжецов».

Майкл Льюис

Финансы / Экономика / Биографии и Мемуары / Документальная литература / Публицистика / О бизнесе популярно / Финансы и бизнес / Ценные бумаги