2. Определить конкретный период времени, в течение которого может возникнуть несущее риск событие (например: «Утечка данных из приложения Х произойдет в ближайшие 12 месяцев», «Потеря доступа к системе Х достаточно продолжительная, чтобы привести к снижению производительности в ближайшие пять лет» и т. д.).
3. Для каждого риска субъективно определить вероятность (от 0 до 100 %), с которой заявленное событие произойдет в указанное время (например: «Существует вероятность 10 %, что утечка данных из системы X произойдет в ближайшие 12 месяцев»).
4. Для каждого риска субъективно определить диапазон финансовых потерь в случае наступления события в виде 90 %-ного доверительного интервала (ДИ). Это достаточно широкий диапазон, позволяющий быть на 90 % уверенными, что фактические потери окажутся в его пределах (например: «Если произойдет утечка данных из приложения X, то с вероятностью 90 % можно предположить, что потери составят от 1 до 10 млн долл.»).
5. Если есть возможность, то получить оценки нескольких экспертов, но не проводить при этом общее совещание в попытке достичь консенсуса. Просто предоставьте список определенных событий, и пусть люди отвечают по отдельности. Если ответы некоторых экспертов сильно отличаются от остальных, выясните, не интерпретируют ли они иначе проблему. Например, если один человек называет вероятность наступления какого-либо события равной 5 % в течение года, а другой говорит, что оно с вероятностью 100 % происходит каждый день, тогда они, судя по всему, по-разному поняли вопрос (авторы лично сталкивались именно с таким вариантом). Однако, если эксперты понимают вопрос одинаково, просто усредните их ответы. То есть вычислите среднее арифметическое значение всех вероятностей наступления события, чтобы получить одно значение вероятности, а затем вычислите среднее арифметическое всех наименьших значений вероятностей для получения одного нижнего предела и наибольших значений для получения одного верхнего предела.
Идея субъективной оценки вероятностей может встретить возражения. Некоторые аналитики, без проблем говорящие, что вероятность составляет 4 по шкале от 1 до 5 или является средней по вербальной шкале, будут утверждать, что существуют требования к количественным вероятностям, делающие количественную оценку невыполнимой. Почему-то проблемы, которые не смущали их при использовании более неоднозначных методов, становятся основными препятствиями при попытке сформулировать значимую вероятность.
Это распространенное заблуждение. Как уже отмечалось в главе 2, использование субъективной вероятности для обозначения исходного состояния неопределенности эксперта является математически обоснованным. На самом деле некоторые проблемы в статистике можно решить
Пока же просто уясните, что большинство экспертов можно научить субъективно оценивать вероятности и что этот навык
Достоверность мнения эксперта можно повысить за счет методов, учитывающих два других источника ошибок в суждениях: высокую степень несогласованности экспертов и склонность к распространенным ошибкам в умозаключениях, когда дело касается вероятностного мышления. Все это также будет рассмотрено в следующих главах (и, разумеется, влияние данных источников ошибок никак не учитывается в обычной матрице рисков).
Вычисляя неопределенность