Например, если вероятность события равна 0,15, то эта формула будет выдавать результат «1» (означающий, что событие произошло) в 15 % случаев. В Excel при каждом новом вычислении (по нажатию клавиши F9) будет получаться новый результат. Повторив операцию тысячу раз, вы увидите, что событие произойдет примерно 150 раз. Обратите внимание, что так будет для каждого отдельного риска, указанного в симуляции. То есть, если у вас 100 рисков, у каждого из которых различная вероятность, и вы запустите 1000 сценариев, то эта маленькая формула будет рассчитана 100 000 раз.
Для определения воздействия необходимо генерировать не просто «0» или «1», а континуум значений. Это можно сделать с помощью одной из обратных функций вероятности редактора Excel. Некоторые функции вероятности в Excel позволяют определить вероятность конкретного результата при определенном распределении вероятности. Например, НОРМРАСП(x;среднее; стандартное_откл;1) покажет вероятность того, что нормальное распределение с заданными средним значением и стандартным отклонением даст значение, равное x или меньше. Обратная же функция вероятности выдаст значение x с учетом вероятности.
В Excel обратная функция вероятности для нормального распределения выглядит так:
=НОРМОБР(вероятность; среднее; стандартное_откл)
(Примечание: в последних версиях Excel также используется функция НОРМ.ОБР, но НОРМОБР тоже работает.) Если заменить аргумент «вероятность» на функцию СЛЧИС(), то получится нормально распределенное случайное число с указанным средним значением и стандартным отклонением. Стандартное отклонение – своего рода мера ширины распределения вероятности, но на самом деле эту величину специалистам очень трудно определить интуитивно. Лучше просто попросить эксперта назвать 90 %-ный доверительный интервал, как описывалось ранее. ДИ можно использовать для вычисления необходимых параметров среднего значения и стандартного отклонения на основе верхнего и нижнего пределов (ВП и НП) диапазона потенциальных убытков, предоставленного экспертом.
Этот диапазон мы превратим в распределение вероятности определенного типа, которое будем часто применять: логнормальное распределение, представляющее собой разновидность более привычного колоколообразного нормального распределения. Это просто нормальное распределение по логарифму значения, которое мы хотим смоделировать, и оно обычно гораздо точнее отображает реальность.
Рис. 3.1. Сравнение логнормального и нормального распределений
На рис. 3.1 показан пример подобного распределения в сравнении с нормальным. Обратите внимание, что логнормальное распределение, в отличие от нормального, выглядит однобоким или «перекошенным». При логнормальном распределении не может получиться нулевое или отрицательное число, но у него имеется хвост справа, допускающий получение очень больших значений в результатах. Именно поэтому логнормальное распределение часто реалистично отражает вероятность различных сумм убытков. Нормальное распределение достаточно широкое, чтобы охватить некоторые экстремальные события, однако оно может также выдавать нелогичные отрицательные результаты на другом конце шкалы (не может быть отрицательного количества взломанных учетных записей или отрицательного времени простоя системы). Вот почему логнормальное распределение используют еще и для моделирования различных величин, которые не могут быть отрицательными, но способны (хотя и редко) оказываться очень большими.
Для получения логнормального распределения в примере, представленном на сайте книги, применяется следующая формула Excel:
= ЛОГНОРМОБР(СЛЧИС();среднее ln(X);стандартное_отклонение ln(X)),
где:
стандартное_отклонение ln(X) = (ln(ВП) – ln(НП))/3,29)
среднее ln(X) = (ln(ВП) + ln(НП))/2)
Таким образом, если нами получен 90 %-ный ДИ для воздействия от 100 000 до 8 млн долл., тогда среднее и стандартное отклонение, которые должны использоваться в функции ЛОГНОРМОБР (т. е. среднее значение и стандартное отклонение логарифма исходного распределения), будут равны:
среднее ln(x) = (ln(8000000) + ln(100000)) / 2 = 13,7
стандартное_отклонение ln(x) =
(ln(8000000) – ln(100000)) / 3,29 = 1,33
Определение убытков от события, у которого вероятность возникновения составляет 5 %, а воздействие – от 1 до 9 млн долл., можно записать так:
= ЕСЛИ(СЛЧИС() < 0,05; ЛОГНОРМОБР(СЛЧИС(); (ln(9000000) + ln(1000000)) / 2;
(ln(9000000) – ln(1000000)) / 3,29); 0)