Читаем Как оценить риски в кибербезопасности. Лучшие инструменты и практики полностью

Например, если вероятность события равна 0,15, то эта формула будет выдавать результат «1» (означающий, что событие произошло) в 15 % случаев. В Excel при каждом новом вычислении (по нажатию клавиши F9) будет получаться новый результат. Повторив операцию тысячу раз, вы увидите, что событие произойдет примерно 150 раз. Обратите внимание, что так будет для каждого отдельного риска, указанного в симуляции. То есть, если у вас 100 рисков, у каждого из которых различная вероятность, и вы запустите 1000 сценариев, то эта маленькая формула будет рассчитана 100 000 раз.

Для определения воздействия необходимо генерировать не просто «0» или «1», а континуум значений. Это можно сделать с помощью одной из обратных функций вероятности редактора Excel. Некоторые функции вероятности в Excel позволяют определить вероятность конкретного результата при определенном распределении вероятности. Например, НОРМРАСП(x;среднее; стандартное_откл;1) покажет вероятность того, что нормальное распределение с заданными средним значением и стандартным отклонением даст значение, равное x или меньше. Обратная же функция вероятности выдаст значение x с учетом вероятности.

В Excel обратная функция вероятности для нормального распределения выглядит так:

=НОРМОБР(вероятность; среднее; стандартное_откл)

(Примечание: в последних версиях Excel также используется функция НОРМ.ОБР, но НОРМОБР тоже работает.) Если заменить аргумент «вероятность» на функцию СЛЧИС(), то получится нормально распределенное случайное число с указанным средним значением и стандартным отклонением. Стандартное отклонение – своего рода мера ширины распределения вероятности, но на самом деле эту величину специалистам очень трудно определить интуитивно. Лучше просто попросить эксперта назвать 90 %-ный доверительный интервал, как описывалось ранее. ДИ можно использовать для вычисления необходимых параметров среднего значения и стандартного отклонения на основе верхнего и нижнего пределов (ВП и НП) диапазона потенциальных убытков, предоставленного экспертом.

Этот диапазон мы превратим в распределение вероятности определенного типа, которое будем часто применять: логнормальное распределение, представляющее собой разновидность более привычного колоколообразного нормального распределения. Это просто нормальное распределение по логарифму значения, которое мы хотим смоделировать, и оно обычно гораздо точнее отображает реальность.

Рис. 3.1. Сравнение логнормального и нормального распределений

На рис. 3.1 показан пример подобного распределения в сравнении с нормальным. Обратите внимание, что логнормальное распределение, в отличие от нормального, выглядит однобоким или «перекошенным». При логнормальном распределении не может получиться нулевое или отрицательное число, но у него имеется хвост справа, допускающий получение очень больших значений в результатах. Именно поэтому логнормальное распределение часто реалистично отражает вероятность различных сумм убытков. Нормальное распределение достаточно широкое, чтобы охватить некоторые экстремальные события, однако оно может также выдавать нелогичные отрицательные результаты на другом конце шкалы (не может быть отрицательного количества взломанных учетных записей или отрицательного времени простоя системы). Вот почему логнормальное распределение используют еще и для моделирования различных величин, которые не могут быть отрицательными, но способны (хотя и редко) оказываться очень большими.

Для получения логнормального распределения в примере, представленном на сайте книги, применяется следующая формула Excel:

= ЛОГНОРМОБР(СЛЧИС();среднее ln(X);стандартное_отклонение ln(X)),

где:

стандартное_отклонение ln(X) = (ln(ВП) – ln(НП))/3,29)

среднее ln(X) = (ln(ВП) + ln(НП))/2)

Таким образом, если нами получен 90 %-ный ДИ для воздействия от 100 000 до 8 млн долл., тогда среднее и стандартное отклонение, которые должны использоваться в функции ЛОГНОРМОБР (т. е. среднее значение и стандартное отклонение логарифма исходного распределения), будут равны:

среднее ln(x) = (ln(8000000) + ln(100000)) / 2 = 13,7

стандартное_отклонение ln(x) =

(ln(8000000) – ln(100000)) / 3,29 = 1,33

Определение убытков от события, у которого вероятность возникновения составляет 5 %, а воздействие – от 1 до 9 млн долл., можно записать так:

= ЕСЛИ(СЛЧИС() < 0,05; ЛОГНОРМОБР(СЛЧИС(); (ln(9000000) + ln(1000000)) / 2;

(ln(9000000) – ln(1000000)) / 3,29); 0)

Перейти на страницу:

Похожие книги

Один хороший трейд. Скрытая информация о высококонкурентном мире частного трейдинга
Один хороший трейд. Скрытая информация о высококонкурентном мире частного трейдинга

Частный трейдинг или proprietory trading пока еще мало освещен в русскоязычной литературе. По сути дела, это первая книга на эту тему. Считается, что такой трейдинг появился много лет назад, когда брокерские компании, банки и другие финансовые институты нанимали трейдеров для торговли на финансовых рынках деньгами компании. Сейчас это понятие распространяется и на трейдеров, которые не получают заработную плату, но вкладывают некую сумму своих личных денег в трейды компании-собственника.Книга рассказывает обо всех важных уроках, преподанных автору рынком на протяжении последних 12 лет, в течение которых он тем или иным образом был связан с частным трейдингом. Он поделится с читателем наработанным опытом и для этого познакомит вас со многими трейдерами. Некоторым из них довелось познать вкус успеха, большинству же пришлось очень туго.Книга нацелена на широкую аудиторию трейдеров и спекулянтов, работающих на финансовых рынках России и мира, а также частных инвесторов, самостоятельно продумывающиХ свои стратегии в биржевых и внебиржевых трейдах.

Майк Беллафиоре

Финансы / Хобби и ремесла / Дом и досуг / Финансы и бизнес / Ценные бумаги
Инвестиции в инфраструктуру: Деньги, проекты, интересы. ГЧП, концессии, проектное финансирование
Инвестиции в инфраструктуру: Деньги, проекты, интересы. ГЧП, концессии, проектное финансирование

Без инвестиций в инфраструктуру невозможно представить себе функционирование общества, экономики, бизнеса, государства и его граждан. В книге описываются основные модели внебюджетного инвестирования в транспортные, социальные, медицинские, IT– и иные проекты. Такие проекты – удел больших денег, многоходовых инвестиционных моделей и значительных интересов, а в основе почти всех подобных проектов прямые инвестиции со стороны бюджетов разных уровней либо различные формы государственно-частного партнерства (ГЧП). Материал в книге изложен понятным языком, с многочисленными примерами, помогающими усвоению важнейшей информации, даны предметные советы по старту и реализации конкретных проектов. Именно они могут принести бизнесу существенный доход, а властям – авторитет и уважение граждан.

Альберт Еганян

Финансы / Финансы и бизнес / Ценные бумаги
Покер лжецов
Покер лжецов

«Покер лжецов» — документальный вариант истории об инвестиционных банках, раскрывающий подоплеку повести Тома Вулфа «Bonfire of the Vanities» («Костер тщеславия»). Льюис описывает головокружительный путь своего героя по торговым площадкам фирмы Salomon Brothers в Лондоне и Нью-Йорке в середине бурных 1980-х годов, когда фирма являлась самым мощным и прибыльным инвестиционным банком мира. История этого пути — от простого стажера к подмастерью-геку и к победному званию «большой хобот» — оказалась забавной и пугающей. Это откровенный, безжалостный и захватывающий дух рассказ об истерической алчности и честолюбии в замкнутом, маниакально одержимом мире рынка облигаций. Эксцессы Уолл-стрит, бывшие центральной темой 80-х годов XX века, нашли точное отражение в «Покере лжецов».

Майкл Льюис

Финансы / Экономика / Биографии и Мемуары / Документальная литература / Публицистика / О бизнесе популярно / Финансы и бизнес / Ценные бумаги