Читаем Как оценить риски в кибербезопасности. Лучшие инструменты и практики полностью

В большинстве случаев (95 %) эта функция будет выдавать ноль. И только в 5 % случаев она сгенерирует значение, которое с вероятностью 90 % попадет в диапазон от 1 до 9 млн долл. Обратите внимание, что, поскольку это 90 %-ный ДИ, существует вероятность 5 %, что значение окажется ниже нижнего предела (но выше нуля, так как логнормальное распределение может давать только положительные значения), и вероятность 5 %, что оно будет выше верхнего предела, иногда намного выше. Так, если в приведенном выше примере событие происходит, то существует вероятность 1 %, что убытки могут превысить 14,2 млн долл.

Логнормальные распределения следует применять осторожно. Экстремальные значения убытков заданного 90 %-ного ДИ могут оказаться нереалистичными, если верхний предел во много раз превысит нижний. Так происходит, когда эксперт, оценивающий значение, ошибочно решает, что верхний предел представляет собой наихудший вариант, а это не так. Верхний предел 90 %-ного доверительного интервала допускает с вероятностью 5 %, что значение будет больше. Экстремальные результаты также чувствительны к нижнему пределу. Если 90 %-ный ДИ составляет от 10 000 до 1 млн долл., то верхний предел оказывается в 100 раз больше нижнего. В этом случае существует вероятность 1 %, что убытки в 2,6 раза превысят заявленный верхний предел (составят 2,6 млн долл.). Если же 90 %-ный ДИ составляет от 1000 до 10 млн долл., то убытки с вероятностью 1 % будут больше верхнего предела более чем в 6,7 раза (67 млн долл.).

Если числа кажутся слишком большими, измените ширину диапазона или просто ограничьте сгенерированное значение некоторым максимумом. При желании обозначить, что 10 млн долл. – это максимальный убыток, можно использовать функцию =МИН(убытки;10000000), чтобы в результате получить наименьшую сумму из убытков или 10 млн долл.

В приложении А представлены и другие распределения, более подходящие для решения тех или иных типов проблем. Там же указаны формулы Excel для распределений с описанием, когда уместно применять каждое из них. Позже мы еще затронем тему выбора распределения.

Суммирование рисков

Для большого количества событий и воздействий можно составить таблицу наподобие табл. 3.2, чтобы смоделировать все убытки для всех событий (пример можно скачать с сайта www.howtomeasureanything.com/cybersecurity).

В приведенном примере интерес представляет общая сумма убытков: 23 345 193 долл. Теперь остается лишь провести еще несколько тысяч испытаний, чтобы увидеть, каким будет распределение убытков. Каждый раз при пересчете таблицы в итоговой сумме будет появляться новое значение (если вы работаете в MS Office на ПК, то команда «пересчитать» должна запускаться нажатием клавиши F9). Если бы вы сумели каким-то образом записать каждый такой результат нескольких тысяч испытаний, то получили бы итог симуляции по методу Монте-Карло.

Таблица 3.2. Пример наступления события риска кибербезопасности, выполненный в Excel

В Excel это проще всего сделать с помощью таблицы данных инструмента «Анализ „что если“». Можно запускать сколько угодно испытаний и видеть результаты каждого, и при этом не придется тысячи раз копировать табл. 3.2. Таблица данных позволяет пользователю Excel увидеть, как будет выглядеть серия ответов в формуле, если менять по одному параметру за раз. Например, у вас есть очень большая электронная таблица для расчета пенсионного дохода, включающая текущие нормы сбережений, рост рынка и ряд других факторов. Возможно, вы захотите посмотреть, как изменится оценка продолжительности проекта, если менять размер ежемесячных сбережений со 100 до 5000 долл. с шагом в 100 долл. В таблице данных автоматически отобразятся все результаты, как если бы вы вручную каждый раз самостоятельно изменяли этот один параметр и записывали результат. Этот метод применяется в электронной таблице, которую можно скачать с сайта www.howtomeasureanything.com/cybersecurity.

Таблица 3.3. Таблица данных Excel, показывающая 10 000 сценариев убытков из-за нарушения кибербезопасности

Чтобы узнать больше о таблицах данных в целом, изучите основы на страницах справки в Excel, но нами используется немного измененный вариант таблицы-образца. Обычно требуется ввести значение в поле «Подставлять значения по столбцам в» или в поле «Подставлять значения по строкам в» (в нашем случае можно было бы использовать только поле «Подставлять значения по столбцам в»), чтобы указать, какое значение таблицы данных будет многократно меняться для получения различных результатов. В данном же примере не требуется определять, какие входные данные менять, потому что у нас уже есть функция СЛЧИС(), меняющая значение каждый раз при пересчете. Таким образом, наши входные значения – просто произвольные числа, отсчитываемые от 1 до количества сценариев, которое мы хотим запустить.

Перейти на страницу:

Похожие книги

Один хороший трейд. Скрытая информация о высококонкурентном мире частного трейдинга
Один хороший трейд. Скрытая информация о высококонкурентном мире частного трейдинга

Частный трейдинг или proprietory trading пока еще мало освещен в русскоязычной литературе. По сути дела, это первая книга на эту тему. Считается, что такой трейдинг появился много лет назад, когда брокерские компании, банки и другие финансовые институты нанимали трейдеров для торговли на финансовых рынках деньгами компании. Сейчас это понятие распространяется и на трейдеров, которые не получают заработную плату, но вкладывают некую сумму своих личных денег в трейды компании-собственника.Книга рассказывает обо всех важных уроках, преподанных автору рынком на протяжении последних 12 лет, в течение которых он тем или иным образом был связан с частным трейдингом. Он поделится с читателем наработанным опытом и для этого познакомит вас со многими трейдерами. Некоторым из них довелось познать вкус успеха, большинству же пришлось очень туго.Книга нацелена на широкую аудиторию трейдеров и спекулянтов, работающих на финансовых рынках России и мира, а также частных инвесторов, самостоятельно продумывающиХ свои стратегии в биржевых и внебиржевых трейдах.

Майк Беллафиоре

Финансы / Хобби и ремесла / Дом и досуг / Финансы и бизнес / Ценные бумаги
Инвестиции в инфраструктуру: Деньги, проекты, интересы. ГЧП, концессии, проектное финансирование
Инвестиции в инфраструктуру: Деньги, проекты, интересы. ГЧП, концессии, проектное финансирование

Без инвестиций в инфраструктуру невозможно представить себе функционирование общества, экономики, бизнеса, государства и его граждан. В книге описываются основные модели внебюджетного инвестирования в транспортные, социальные, медицинские, IT– и иные проекты. Такие проекты – удел больших денег, многоходовых инвестиционных моделей и значительных интересов, а в основе почти всех подобных проектов прямые инвестиции со стороны бюджетов разных уровней либо различные формы государственно-частного партнерства (ГЧП). Материал в книге изложен понятным языком, с многочисленными примерами, помогающими усвоению важнейшей информации, даны предметные советы по старту и реализации конкретных проектов. Именно они могут принести бизнесу существенный доход, а властям – авторитет и уважение граждан.

Альберт Еганян

Финансы / Финансы и бизнес / Ценные бумаги
Покер лжецов
Покер лжецов

«Покер лжецов» — документальный вариант истории об инвестиционных банках, раскрывающий подоплеку повести Тома Вулфа «Bonfire of the Vanities» («Костер тщеславия»). Льюис описывает головокружительный путь своего героя по торговым площадкам фирмы Salomon Brothers в Лондоне и Нью-Йорке в середине бурных 1980-х годов, когда фирма являлась самым мощным и прибыльным инвестиционным банком мира. История этого пути — от простого стажера к подмастерью-геку и к победному званию «большой хобот» — оказалась забавной и пугающей. Это откровенный, безжалостный и захватывающий дух рассказ об истерической алчности и честолюбии в замкнутом, маниакально одержимом мире рынка облигаций. Эксцессы Уолл-стрит, бывшие центральной темой 80-х годов XX века, нашли точное отражение в «Покере лжецов».

Майкл Льюис

Финансы / Экономика / Биографии и Мемуары / Документальная литература / Публицистика / О бизнесе популярно / Финансы и бизнес / Ценные бумаги