6.1. Тестирование исходного и логарифмического временнoго ряда на стационарность
В главе 5 с помощью анализа остатков на выбросы, тестов Чоу на стабильность и точность прогноза, а также метода Гуйарати по определению характера структурных изменений была выявлена нестабильность параметров уравнения регрессии USDOLLAR =
В связи с этим нам предстоит задача по созданию уравнения регрессии, обладающего стационарной AR- или ARM А-структурой. Напомним нашим читателям, что отличие первой от второй заключается в том, что первое уравнение представляет уравнение авторегрессии, а второе — уравнение авторегрессии со скользящей средней.
Вот что пишет о специфике стационарных временных рядов профессор статистики Стэнфордского университета Т. Андерсон: «Предполагается, что случайные составляющие имеют в каждый момент времени одинаковые дисперсии и некоррелированны. Они могут представлять собой ошибки наблюдения или нерегулярности иного рода. Предположения о равенстве дисперсий и отсутствии корреляции являются определенным приближением к действительному положению вещей…Иногда наблюдения лучше соответствуют условиям равенства дисперсий и аддитивности ошибки, если преобразовать масштаб измерений изучаемой величины. Например, в ряде экономических исследований производится анализ не самих цен, а их логарифмов…»[18]
Попробуем получить стационарные ряды, взяв логарифмы от исходного уровня временного ряда, содержащего данные по курсу доллара за период с июня 1992 г. по июнь 2010 г. Однако сначала убедимся, что исходный временной ряд, содержащий данные по ежемесячному курсу доллара за период с июня 1992 г. по июнь 2010 г., действительно нестационарен, и с этой целью воспользуемся указаниями алгоритма действий № 21.
Мы уже проверяли остатки на стационарность (см. алгоритм действий № 9 «Как проверить в EViews остатки на стационарность модели»), В этом случае будем действовать аналогичным образом, однако вместо файла RESID откроем файл USDOLLAR, после чего воспользуемся опциями VIEW/UNIT ROOT TEST (посмотреть/ тест на единичный корень), в результате чего появится диалоговое мини-окно UNIT ROOT TEST (рис. 6.1). Его мы заполним следующим образом. Параметр TEST TYPE (тип теста) установим на опции AUGMENTED DICKEY-FULLER (расширенный тест Дикки — Фуллера), a TEST FOR UNIT ROOT IN (тест на единичный корень для…) следует установить на опции LEVEL (исходный уровень ряда), так как мы проводим исследование исходного уровня временн
После щелчка мышкой кнопки ОК в диалоговом мини-окне Unit Root test получим табл. 6.1 с результатами решения теста на стационарность. Однако полученный уровень значимости
Напомним, что альтернативная гипотеза об отсутствии единичного корня и стационарности исходного временного ряда может быть принята лишь при уровне значимости менее 0,05. В принципе, можно попробовать получить стационарный ряд, включив в тестовое уравнение (INCLUDE IN TEST EQUATION) вместо опции константа (INTERCEPT) другую опцию TREND AND INTERCEPT (тренд и константа) (см. рис. 6.1). Однако в результате у нас получился бы еще более высокий уровень значимости ^-критерия = 0,9033, который с еще большим уровнем надежности подтвердил бы нулевую гипотезу о наличии единичного корня и нестационарности временного ряда.