Чтобы получить стационарный ряд, попробуем взять логарифмы от исходного уровня временного ряда. С этой целью нужно открыть файл USDOLLAR и воспользоваться опциями PROC/GENERATE BY EQUATION (выполнить/создать с помощью уравнения), после чего на экране появится диалоговое мини-окно GENERATE SERIES BY EQUATION (создать временной ряд по уравнению) (рис. 6.2), которое мы должны заполнить таким образом: USDOLLAR1 = log(USDOLLAR). В результате у нас появится новый логарифмический временной ряд, который поместим в файле USDOLLAR1.
Следующей задачей будет тестирование логарифмического временного ряда на стационарность. С этой целью откроем файл USDOLLAR1 и воспользуемся опциями VIEW/UNIT ROOT TEST (посмотреть/тест на единичный корень). Далее будем действовать таким же образом, как и в алгоритме действий № 21. При этом параметр INCLUDE IN TEST EQUATION (включить в тестовое уравнение) установим на опции INTERCEPT (включить константу). В результате диалоговое мини-окно UNIT ROOT TEST приобретет следующий вид (рис. 6.3).
Нажав на кнопку ОК, получим следующий вывод итогов по результатам расширенного теста Дикки — Фуллера (табл. 6.2). В результате удается получить уровень значимости
6.2. Построение модели авторегрессии со скользящей средней и стационарной ARMA-структурой
Нам удалось выяснить, что созданный логарифмический временной ряд стационарен. Однако нужно еще построить уравнение авторегрессии со стационарной ARMA-структурой, что очень важно с точки зрения получения устойчивых (к воздействию внешних шоков) коэффициентов регрессии и получения надежных прогнозов. Этой проблемой мы уже занимались (см. алгоритм действий № 13 «Тестирование стационарности авторегрессионного процесса, описываемого уравнением USDOLLAR =
Мы уже довольно много времени уделили построению нестационарной прогностической модели USDOLLAR =
1. Построение коррелограммы в EViews с целью определения параметров
2. Решение уравнения регрессии и проверка значимости всех его параметров. Этот вопрос можно считать самым важным из всего нашего перечня (см. алгоритм действий № 3 «Как решить уравнение регрессии в Excel», алгоритм действий № 4 «Оценка статистической значимости уравнения регрессии и его коэффициентов» и алгоритм действий № 6 «Как решить уравнение регрессии в EViews»).
3. Тестирование AR- или ARMA-структуры уравнения на стационарность (см. алгоритм действий № 13 «Тестирование на стационарность AR-структуры уравнения USDOLLAR =
4. Тестирование AR- или ARMA-структуры уравнения на импульсный ответ (см. алгоритм действий № 14 «Тестирование на импульсный ответ AR-структуры нестационарного процесса, описываемого уравнением USDOLLAR = а x USDOLLAR(-1) +
5. Проверка остатков, полученных в результате решения уравнения регрессии, на наличие в них автокорреляции (см. алгоритм действий № 7 «Как выполняется LM-тест Бройша — Годфри в EViews»).
6. Проверка остатков на стационарность (см. алгоритм действий № 9 «Как в EViews проверить остатки на стационарность»),