Читаем Как предсказать курс доллара. Расчеты в Excel для снижения риска проигрыша полностью

Правда, значимость F-критерия в данном случае дается Excel в экспоненциальном виде, который может быть непонятен для некоторых неискушенных в математике читателей. Для тех, кто хочет разобраться, хочу заметить, что число в экспоненциальном виде легко преобразовать в обычную цифру. Например, 1,60E+04=1*10^4=16000, а 1,60E-04 = 1*(1/10^4)=0,00016. При этом E+04 в данном случае означает умножение 1,60 на 104, а E-04 означает умножение 1,60 на 10-4 или (что одно и то же) умножение 1,60 на 1/104.

Тот, кто не хочет ломать голову над числом в экспоненциальном виде, может эту проблему решить, преобразовав формат данной ячейки с экспоненциального в числовой. С этой целью наведем курсор мышки на эту ячейку, и, щелкнув ее правой кнопкой, в появившемся диалоговом окне выберем опцию ФОРМАТ ЯЧЕЕК. После этого появится диалоговое окно ФОРМАТ ЯЧЕЕК, в котором нужно выбрать опцию ЧИСЛОВОЙ – см. рис. 2.2. В результате нам удастся выяснить, что значимость F=0,00. Следовательно, в данном случае значимость F меньше 0,01, то есть можно сделать вывод, об 1% статистической значимости этого уравнения регрессии с (или 99% уровнем надежности). Хочу обратить внимание читателей, что для большей надежности для целей прогнозирования лучше использовать уравнения регрессии со значимостью F меньше 0,01.

Рис. 2.2

В таблице 2.4 представлены коэффициенты уравнения регрессии и оценки их статистической значимости. При этом в разделе Коэффициенты цифра 32,10052 слева от Y-ПЕРЕСЕЧЕНИЕ в формуле линейного тренда: Y=AX+С обозначает исходный уровень (его также называют свободный член или константа), то есть дает числовое значение буквы С. А вот коэффициент 0,123085 слева от независимой переменной «Порядковый номер торгового дня» дает числовое значение буквы A в формуле линейного тренда.

Следовательно, в результате решения в Excel уравнения регрессии нами получена следующая формула для расчета линейного тренда (числовые значения после запятой округлены до четырех знаков):

Y = 0,1231X + 32,1005

Где: Y‑ курс доллара к рублю по итогам торгового дня, а X – порядковый номер торгового дня.

Интерпретация данного уравнения регрессии следующая: с каждым торговым днем (увеличением номера торгового дня X на одну единицу) величина курса доллара Y за период с 27 июня по 28 ноября 2014 года в среднем вырастала на 12,31 копейки при исходном уровне, то есть расчетном значении курса доллара к рублю перед началом торгов 27 июня 2014 года, равном 31,1005 рублей.

Заметим, что такую же формулу мы получили и графическим способом – см. рис. 1.16, поскольку при графической аппроксимации колебаний независимой переменной трендом также используется МНК.

Особое внимание следует обратить на столбец Р-ЗНАЧЕНИЕ, в котором сгенерированы уровни значимости, соответствующие вычисленным в предыдущем столбце значениям t-статистики. Причем, если Р-значение меньше 0,01, то можно говорить о статистической значимости соответствующего члена уравнения регрессии с 1% значимостью (или 99% уровнем надежности). Если Р-значение больше 0,01, но меньше 0,05, то тогда говорят о статистической значимости соответствующего члена уравнения регрессии с 5% значимостью (или 95% уровнем надежности). Для большей надежности лучше для целей прогнозирования использовать члены уравнения регрессии с Р-значением меньше 0,01.

В таблице 2.3 оба Р-значения даются Excel в экспоненциальной форме, но мы уже знаем, как их можно преобразовать в числовой формат. В результате выясним, что оба Р-значения равны 0,00. Отсюда легко сделать вывод, что коэффициенты A и С в формуле линейного тренда имеют 1% статистическую значимостью (или 99% уровень надежности).

В таблице 2.3 нужно также обратить внимание на столбцы Нижние 95% и 99% и Верхние 95% и 99%, которые показывают соответственно нижние и верхние интервалы значений коэффициентов при 95% и 99 % уровнях надежности, заданных пользователем Excel. Причем, если при переходе того или иного коэффициента от столбца Нижние к столбцу Верхние происходит смена знака от минуса к плюсу или наоборот, данный коэффициент считают статистически незначимым для данного уровня надежности. Вполне очевидно, что в практических расчетах столь неоднозначно изменяющийся коэффициент уравнения, который может быть как положительным, так и отрицательным, либо даже равен 0, нельзя использовать.

Таблица 2.4. Коэффициенты уравнения регрессии и оценки их статистической значимости

Источник: расчеты автора

Как мы уже говорили ранее, уравнение регрессии в отличие от обычных уравнений, оценивающих функциональную, т. е. жестко детерминированную связь между переменными, дает прогноз зависимой (результативной) переменной с учетом воздействия случайного фактора, поэтому фактические значения результативного признака практически всегда отличаются от его расчетных (теоретических) значений. Далее покажем, как находится для каждого наблюдения (торгового дня) величина случайной компоненты, то есть остатка.

Перейти на страницу:

Похожие книги