2.1. P-Значение должно быть меньше 0,05 – при 5% уровне статистической значимости или 95% уровне надежности; P-Значение должно быть меньше 0,01 ‑ при 1% уровне статистической значимости или 99% уровне надежности.
2.2. Коэффициенты регрессии и свободного члена при переходе от столбца Нижние и к столбцу Верхние (при заданном уровне надежности) не должны менять свой знак. Если смена знака происходит, то коэффициенты данного уравнения регрессии считаются статистически незначимыми.
Шаг 3. Принятие решения о возможности прогнозирования по данной статистической модели.
3.1. Средняя ошибка аппроксимации не должна быть выше 7-10%.
Шаг 4. Проверка автокорреляции в остатках.
4.1. Проверка графическим способом остатков, полученных после решения уравнения регрессии, на наличие в них автокорреляции. В случае обнаружения автокорреляции в остатках это уравнение регрессии не годится для прогнозирования. Для устранения автокорреляции в остатках существует ряд способов. Но мы для ее устранения будем решать двухфакторное уравнение регрессии, включив в него новую переменную ‑ «Остатки с лагом в один день».
Используем алгоритм № 6 «Оценка адекватности уравнения регрессии» для анализа информации, полученной после вывода итогов по двухфакторному уравнению регрессии. Судя по таблице 3.2, R2 в данном случае оказался равен 0,9808, Иначе говоря, это уравнение регрессии объясняет 98,08% всех колебаний зависимой (результативной) переменной «Курс доллара к рублю». При этом нормированный R2 равен 0,9805, то есть больше нормированного R2=0,8923, полученного после решения однофакторного уравнения. Следовательно, по этому критерию двухфакторному уравнению, безусловно, нужно отдать предпочтение.
Таблица 3.2. Регрессионная статистика
Источник: расчеты автора
В таблице 3.3 нас интересует Значимость F, которое первоначально Excel дает в экспоненциальном виде. Но с помощью опции ФОРМАТ ЯЧЕЕК мы преобразовали его в числовой вид и убедились, что Значимость F =0,00. Следовательно, в данном случае значимость F меньше 0,01, то есть можно сделать вывод, об 1% статистической значимости полученного нами двухфакторного уравнения регрессии (или 99% уровнем надежности).
Таблица 3.3. Дисперсионный анализ
Источник: расчеты автора
В таблице 3.4 надо обратить внимание на P-Значения коэффициентов уравнения регрессии, которые первоначально Excel дает в экспоненциальном виде. Но с помощью опции ФОРМАТ ЯЧЕЕК мы преобразовали их в числовой вид. При этом все три P-Значения равны 0,00. Следовательно, в данном случае P-Значения меньше 0,01, то есть можно сделать вывод, об 1% статистической значимости всех коэффициентов полученного нами двухфакторного уравнения регрессии (или 99% уровнем надежности). При этом все коэффициенты данного уравнения регрессии при переходе от столбца Нижние и к столбцу Верхние (при заданном уровне надежности) не меняют свой знак. Заметим, что столбцы Нижние и Верхние дают нижнюю и верхнюю границу интервальной оценки величины коэффициента регрессии. И если у них будут разные знаки, то прогнозировать по такому уравнению регрессии будет невозможно, поскольку мы будем получать противоречивые оценки.
Используя коэффициенты из таблицы 3.4, двухфакторное уравнение регрессии в общем (буквенном) виде: Y=AXt+BXo+C легко преобразовать в числовой вид (с округлением после запятой на четыре знака):
Y=0,1249Xt+0,9426Xo+32,0329
Интерпретация этого уравнения регрессии следующая: 1. За период с 27 июня по 28 ноября 2014 года с каждым торговым днем (увеличением номера торгового дня Xt на одну единицу) курс доллара Y в среднем вырастал на 12,49 копейки; 2. Рост величины остатка с лагом в один день Xo на 1 рубль за этот же период приводил к росту курса доллара Y в среднем на 94,26 копейки; 3. При исходном уровне, то есть расчетным значением курса доллара к рублю перед началом торгов 27 июня 2014 года, равном 32,0329 рублей.
Таблица 3.4. Коэффициенты уравнения регрессии
Источник: расчеты автора
В таблице 3.5 даются найденные по двухфакторному уравнению регрессии расчетные значения курса доллара yрасчет (см. раздел Предсказанное Курс доллара к рублю и остатки (см. раздел Остатки). Расчетный курс доллара к рублю вычисляется для торгового дня № 1 по уже найденному нами двухфакторному уравнению регрессии:
Y расчет =0,1249Xt+0,9426Xo+32,0329=0,1249*1+0,9426*0+32,0329=32,1578
Таким образом для наблюдения 1, то есть для торгового дня с порядковым № 1 (27 июня 2014 года), расчетный курс доллара к рублю оказался равен 32,1578 рублям. При этом остаток для каждого наблюдения (торгового дня) находится путем вычитания из фактического курса доллара его расчетного значения на этот торговый день. Так, фактический курс доллара для торгового дня № 1 равен 33,6306 рублей. Тогда остаток для этого наблюдения равен:
Остаток для наблюдения 1 равен 33,6306-32,1578=1,4728 рублей.
Остатки, полученные после решения двухфакторного уравнения регрессии, представлены в таблице 3.5.
Таблица 3.5. Вывод остатка
Источник: расчеты автора