Читаем Как предсказать курс доллара. Расчеты в Excel для снижения риска проигрыша полностью

Теперь оценим относительную точность двухфакторного уравнения регрессии с учетом величины полученных остатков, как это мы уже делали в главе 2, заполняя таблицу 2.6 по итогам решения однофакторного уравнения регрессии. Напомню, что «Остатки по модулю» можно получить, используя функцию ABS. В результате получим таблицу 3.6.

Как мы это уже делали в предыдущей главе, чтобы найти среднюю ошибку аппроксимации (в %) для каждого наблюдения, надо его «Остаток по модулю» поделить на «Фактический курс доллара к рублю», а полученный результат умножить на 100. Так, для наблюдения 1, «Средняя ошибка аппроксимации»= 1,4728/33,6306*100=4,8%.

После того как мы найдем для всех наблюдений средние ошибки аппроксимации, их нужно сложить. В результате получим итоговую сумму = 90,2– см. таблицу 3.6. Потом эту сумму нужно поделить на общее количество наблюдений, то есть в данном случае на 109. В результате выяснится, что средняя ошибка аппроксимации для двухфакторного уравнения регрессии равна 0,8%. В то время как средняя ошибка аппроксимации у однофакторного уравнения была равна 2,9%, то есть существенно больше.

Таблица 3.6. Оценка средней ошибки аппроксимации, в %

Источник: расчеты автора и данные Банка России

Теперь посмотрим, есть ли автокорреляция в остатках, полученных после решения двухфакторного уравнения регрессии. Поскольку мы планируем делать прогнозы с прогнозируемым горизонтом в один день, то нам нужно посмотреть – нет ли автокорреляции в остатках с лагом в один торговый день. С этой целью построим таблицу 3.7. При этом будем действовать так же, как при заполнении таблицы 2.7.

Таблица 3.7. Тестирование на автокорреляцию в остатках двухфакторного уравнения регрессии

Источник: расчеты автора

На основе данных этой таблицы и используя алгоритм № 2 «Построение графика в Microsoft Excel» можно построить график зависимости «Остатков» от «Остатков с лагом в один торговый день». Правда, в шаге 2 этого алгоритма нужно щелкнуть левой кнопкой мышки не опцию График (подходит к анализу зависимости результативной переменной от независимой переменной – время, порядковый номер месяца, торгового дня и т.д.), а опцию ТОЧЕЧНЫЙ (подходит к анализу зависимости результативной переменной от независимой переменной, не обозначающей время).

В результате получим следующий график зависимости «Остатков» от «Остатков с лагом в один торговый день»‑ см. рис.3.1. Судя по тому, что точки на графике разбросаны по кругу в хаотичном порядке, можно сделать вывод об отсутствии автокорреляции в остатках. Построенный на основе графика данных тренд также говорит о низкой величине R2=0,0005, то есть он объясняет лишь 0,05% всей динамики результативной (зависимой) переменной.

Рис. 3.1

Используя уже апробированный в главах 2 и 3 алгоритм действий № 5 «Как решить уравнение регрессии в Excel», можно решить уравнение регрессии с этими двумя переменными – результативной переменной «Остатки, Y» и независимой переменной «Остатки с лагом в один торговый день, X». В результате выяснится, что как само уравнение регрессии, так и его члены, оказались статистически незначимыми, что подтверждает наш вывод об отсутствии автокорреляции в остатках двухфакторного уравнения регрессии, сделанный на основе графика на рис. 3.1.

<p>3.2. Сравнение двухфакторного и однофакторного уравнений регрессии</p>

После того как мы, согласно алгоритму № 6, провели оценку адекватности однофакторного и двухфакторного уравнений регрессии, посмотрим, какие преимущества имеет каждая из них. С этой целью построим таблицу 3.8.

Судя по этой таблице, единственным и не решающим преимуществом однофакторного уравнения регрессии является его более простая формула. В то время как тремя важными плюсами двухфакторного уравнения регрессии являются: во-первых, более низкая средняя ошибка аппроксимации, во-вторых, более высокий нормированный коэффициент детерминации R2, в-третьих, отсутствие автокорреляции в остатках. Поэтому для прогнозирования курса доллара к рублю по выявленному нами тренду нужно использовать двухфакторное уравнение регрессии.

Таблица 3.8. Сравнение однофакторной и двухфакторной уравнений регрессии

Источник: расчеты автора

Поскольку нам удалось построить – на основе двухфакторного уравнения ‑ вполне адекватную статистическую модель для расчета линейного тренда, теперь займемся составлением прогнозов. Для целей биржевой торговли лучше делать прогноз с горизонтом только в один период времени, что обеспечит его большую точность с учетом имеющейся в момент прогнозирования рыночной информации.

Перейти на страницу:

Похожие книги