Читаем Камень, ножницы, теорема. Фон Нейман. Теория игр полностью

Предположим, два человека должны поделить торт. Обычно в этом примере речь идет о детях: считается, что дети очень любят сладкое и потому хотят получить самый большой кусок, и это позволяет лучше понять ситуацию. Детский индивидуализм — идеальное качество для нужных нам игроков. Дележ торта будет происходить так: ребенок А будет резать торт, а ребенок В — первым выбирать себе кусок. Таким образом, ребенок А должен всегда помнить о ребенке В и о том, что после того, как он разрежет весь торт, В заберет себе самый большой кусок. Это условие является основополагающим для выбора наилучшей стратегии, которая, разумеется, состоит в том, чтобы разрезать торт на две равные части. Любой другой вариант опасен. Если, например, А подумает, что В — очень хороший и воспитанный ребенок и потому возьмет себе кусок поменьше, то он начнет резать торт на неравные куски. Но это решение содержит много рисков и основывается на догадках или дополнительной информации, которая не имеет ничего общего с игрой.

Это объяснение может показаться слишком простым, но в нем содержатся все ключевые элементы, определяющие сценарий, выбранный для теории игр. Ситуация типа «я играю только для того, чтобы приятно провести время, меня не беспокоит проигрыш, и вообще я могу позволить выиграть своему противнику» может быть вполне оправданной во многих сценариях, но не в теории игр. В ней игроки рассматриваются прежде всего как рациональные люди, чья цель — выиграть, а для этого им нужно думать о себе.

Требование к рациональности игроков довольно глубокое. Оно предполагает идеальную ситуацию, так как никто не в состоянии держать в уме все возможные ходы и каждый раз принимать нужное решение, чтобы выиграть любой ценой. Игры с простой структурой, такие как «ним», позволяют дойти до такого уровня без особого труда, поскольку в них деревья принятия решений имеют мало ветвей, и если оба игрока абсолютно рациональны в нужном нам смысле, то либо они придут к ничьей, либо выиграет тот, кто сделал первый ход. Другие игры, например го или шахматы, тоже обладают этими характеристиками, но уровень их сложности гораздо выше, и не допустить погрешностей фактически невозможно.

ИГРА С ДВУМЯ ИГРОКАМИ И НУЛЕВОЙ СУММОЙ

Обобщая, можно сказать, что игра — это процесс, в котором участвуют два или больше игроков, действующих по строго определенным правилам. Участники могут принимать решения, формирующие особую стратегию, которая может повлиять на ход игры. Цель игры — получить некую выгоду, поэтому одним из ключевых ее понятий является платеж — более общее понятие по сравнению с закладом. Платеж может существовать в виде приза вне самой игры, который делится между несколькими игроками, или же представлять собой штраф. Например, в соревновании двух игроков один выигрывает (получает положительный платеж), а второй проигрывает (получает отрицательный платеж).

Опираясь на понятие платежа, можно провести первую классификацию игр и разделить их на две большие группы: игры с нулевой и ненулевой суммой. В игре первого типа игроки борются за один приз или платеж, а сумма всех выигрышей равна сумме всех проигрышей. Игры, в которых можно одновременно выбирать несколько призов, называются играми с ненулевой суммой.

Спектр игр с нулевой суммой очень широк. Именно к этой категории относятся такие игры, как шашки или шахматы: когда один игрок получает очко, другой его теряет. Можно сказать, что один получает положительное очко, а второй — отрицательное. Такой сценарий фон Нейман назвал игрой с нулевой суммой для двух игроков. Эта схема включает в себя большое количество соревновательных игр. В них игрок получает все или ничего, борьба идет до конца, то есть игра заканчивается, когда один игрок побеждает, а другой проигрывает. Другими словами, игроки не могут сотрудничать друг с другом.

ПЛАТЕЖНАЯ МАТРИЦА

Для анализа игр очень полезным инструментом оказывается так называемая платежная матрица (Pay-off Matrix). Она представляет собой двойную таблицу, где слева записываются возможные стратегии игрока А, а вверху — игрока В. Под стратегиями понимаются возможности, появляющиеся в ходе игры. В каждой ячейке таблицы указаны выигрыши или проигрыши каждого игрока, полученные в результате выбранной стратегии. Два числа, разделенные запятой или косой чертой, обозначают выигрыши и проигрыши первого и второго игрока соответственно.

Игрок В

1

2

Игрок А

1

10/2

-3/5

2

1/-6

4/8

Эта платежная матрица говорит нам, что если игрок А выберет стратегию 2, а игрок В — стратегию 1, то в результате выигрыш первого составит 1, а проигрыш второго — 6. Если же игрок А выберет стратегию 1, а В — 2, то проигрыш первого составит 3, а выигрыш второго — 5. Ниже приведен еще один, более простой способ изображения платежной матрицы с такой же расшифровкой.

В1

В2

А1

10,2

-3,5

А2

1-6

4,8

При игре с нулевой суммой достаточно вставить одно число в каждую ячейку, так как выигрыш одного игрока будет равен потере другого.

Перейти на страницу:

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии